Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 054209    DOI: 10.1088/1674-1056/abd695
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system

Lei Shang(尚蕾)1, Bin Chen(陈彬)1,2,†, Li-Li Xing(邢丽丽)1, Jian-Bin Chen(陈建宾)1, Hai-Bin Xue(薛海斌)1, and Kang-Xian Guo(郭康贤)3
1 Department of Physics, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China;
2 Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan 030024, China;
3 Department of Physics, School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China
Abstract  We systematically investigate the four-wave mixing (FWM) spectrum in a dual-cavity hybrid optomechanical system, which is made up of one optical cavity with an ensemble of two-level atoms and another with a mechanical oscillator. In this work, we propose that the hybrid dual-cavity optomechanical system can be employed as a highly sensitive mass sensor due to the fact that the FWM spectrum generated in this system has a narrow spectral width and the intensity of the FWM can be easily tuned by controlling the coupling strength (cavity-cavity, atom-cavity). More fascinatingly, the dual-cavity hybrid optomechanical system can also be used as an all-optical switch in view of the easy on/off control of FWM signals by adjusting the atom-pump detuning to be positive or negative. The proposed schemes have great potential applications in quantum information processing and highly sensitive detection.
Keywords:  four-wave mixing      dual-cavity optomechanical system      atomic ensemble  
Received:  10 November 2020      Revised:  14 December 2020      Accepted manuscript online:  24 December 2020
PACS:  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  42.50.-p (Quantum optics)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504258, 61775043, and 11805140) and the Natural Science Foundation of Shanxi Province, China (Grant Nos. 201801D221021 and 201801D221031).
Corresponding Authors:  Bin Chen     E-mail:  chenbin@tyut.edu.cn

Cite this article: 

Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤) Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system 2021 Chin. Phys. B 30 054209

[1] Seok H, Buchmann L F, Singh S and Meystre P 2012 Phys. Rev. A 86 063829
[2] Poot M and Zant H S J V D 2012 Phys. Rep. 511 273
[3] Aspelmeyer M, Meystre P and Schwab K 2012 Phys. Today 65 29
[4] Favero I and Karrai K 2009 Nat. Photon. 3 201
[5] Meystre P 2013 Ann. Phys. 525 215
[6] Aspelmeyer M, Kippenberg T J and Marquardt F 2013 Rev. Mod. Phys. 86 1391
[7] Marquardt F and Girvin S M 2009 Physics 2 40
[8] Metzger C H and Karrai K 2004 Nature 432 1002
[9] Kippenberg T J and Vahala K J 2008 Science 321 1172
[10] Aldana S, Bruder C and Nunnenkamp A 2014 Phys. Rev. A 90 063810
[11] Sete E A and Eleuch H 2012 Phys. Rev. A 85 043824
[12] Wang L D, Yan J K, Zhu X F and Chen B 2017 Phys. E 89 134
[13] Chen B, Wang X F, Yan J K and Zhu X F 2018 Superlattice. Microst. 113 301
[14] Bariani F, Seok H, Singh S, Vengalattore M and Meystre P 2015 Phys. Rev. A 92 043817
[15] Chen B, Wang L D, Zhang J and Xue H B 2016 Phys. Lett. A 380 798
[16] Asghari Nejad A, Askari H R and Baghshahi H R 2017 Chin. Phys. lett. 34 084205
[17] Yong H 2016 Phys. Rev. A 94 063804
[18] Mu Q X, Lang C and Zhang W Z 2019 Chin. Phys. B 28 114206
[19] Yong H 2015 Phys. Rev. A 91 013827
[20] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803
[21] Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
[22] Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Lin Q, Hill J T, Chang D E and Painter 2011 Nature 472 69
[23] Harris S E, Field J E and Imamoglu A 1990 Phys. Rev. Lett. 64 1107
[24] Karuza M, Biancofiore C, Bawaj M, Molinelli C, Galassi M, Natali R, Tombesi P, Giuseppe G D and Vitali D 2013 Phys. Rev. A 88 013804
[25] Yan D, Wang Z H, Ren C N, Gao H, Li Y and Wu J H 2015 Phys. Rev. A 91 023813
[26] Wei W Y, Yu Y F and Zhang Z M 2018 Chin. Phys. B 27 034204
[27] Yan J K, Zhu X F and Chen B 2018 Chin. Phys. B 27 074214
[28] Asghari N A, Askari H R and Baghshahi H R 2017 Appl. Opt. 56 2816
[29] Zhu X F, Wang L D, Yan J K and Chen B 2018 Optik 154 139
[30] Thevenaz L 2008 Nat. Photon. 2 474
[31] Asghari N A, Askari H R and Baghshahi H R 2017 Chin. Phys. Lett. 34 084205
[32] Chang D E, Safavi-Naeini A H, Hafezi M and Painter 2011 New J. Phys. 13 023003
[33] Qiu W, Liu J J, Wang Y D, Yang Y J, Gao Y 2018 Opt. Commun. 413 207
[34] Bigelow M S, Lepeshkin N N and Boyd R W 2003 Science 301 5630
[35] Bigelow M S, Lepeshkin N N and Boyd R W 2003 Phys. Rev. Lett. 90 113903
[36] Wang Y P, Zhang Z C, Yu Y F and Zhang Z M 2019 Chin. Phys. B 28 014202
[37] Jiang C, Cui Y S and Liu H X 2013 Europhys. Lett. 104 34004
[38] Jiang L, Yuan X R, Cui Y S, Chen G B, Zuo F and Jiang C 2017 Phys. Lett. A 381 3289
[39] Wang X F and Chen B 2019 J. Opt. Soc. Am. B 36 162
[40] Chen H J, Wu H W, Yang J Y, Li X C, Sun Y J and Peng Y 2019 Nanoscale Res. Lett. 14 73
[41] Li Z Y, You X, Li Y M, Liu Y C and Peng K C 2018 Phys. Rev. A 97 033806
[42] Li Y Q and Xiao M 1996 Opt. Lett. 21 1064
[43] Deng L, Kozuma M, Hagley E W and Payne M G 2004 Phys. Rev. Lett. 88 143902
[44] Wu Y, Saldana J and Zhu Y 2005 Phys. Rev. A 67 013811
[45] Sun H, Fan S, Zhang H, Zhang H J and Gong S Q 2013 Phys. Rev. B 87 235310
[46] Nielsen M P, Shi X Y, Dichtl P, Maier S A and Oulton R F 2017 Science 358 1179
[47] Li Z P, Wang X L and Li C Y 2016 Laser Phys. Lett. 13 025402
[48] Zhou H, Gu T and Mcmillan J F, Petrone N, Zanda A V D, Hone J C and Yu M B 2014 Appl. Phys. Lett. 105 091111
[49] Ullah K 2019 Chin. Phys. B 28 114209
[50] Huang S and Agarwal G S 2010 Phys. Rev. A 81 033830
[51] Kippenberg T J and Vahala K J 2008 Science 321 1172
[52] Li J J and Zhu K D 2011 Phys. Rev. B 83 245421
[53] Li J J and Zhu K D 2011 Nanotechnology 22 055202
[54] Li J J and Zhu K D 2011 J. Appl. phys. 110 114308
[55] Agarwal G S and Puri R R 1986 Phys. Rev. A 33 1757
[1] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[2] A two-mode squeezed light based on a double-pump phase-matching geometry
Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2020, 29(7): 074207.
[3] Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser
Hao Liu(刘浩), Jin-Peng Yuan(元晋鹏), Li-Rong Wang(汪丽蓉), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(4): 043203.
[4] Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁). Chin. Phys. B, 2019, 28(2): 024216.
[5] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[6] Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings
Chao Wu(吴超), Yingwen Liu(刘英文), Xiaowen Gu(顾晓文), Shichuan Xue(薛诗川), Xinxin Yu(郁鑫鑫), Yuechan Kong(孔月婵), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), Zhihong Zhu(朱志宏), Ping Xu(徐平). Chin. Phys. B, 2019, 28(10): 104211.
[7] Enhancement of multiple four-wave mixing via cascaded fibers with discrete dispersion decreasing
Jia-Bao Li(李嘉宝), Ling-Jie Kong(孔令杰), Xiao-Sheng Xiao(肖晓晟), Chang-Xi Yang(杨昌喜). Chin. Phys. B, 2017, 26(6): 064205.
[8] Probe gain via four-wave mixing based on spontaneously generated coherence
Hong Yang(杨红), Ting-gui Zhang(张廷桂), Yan Zhang(张岩). Chin. Phys. B, 2017, 26(2): 024204.
[9] Scheme for preparation of multi-partite entanglement of atomic ensembles
Peng Xue(薛鹏), Zhi-Hao Bian(边志浩). Chin. Phys. B, 2016, 25(8): 080305.
[10] Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection
Nan-Nan Liu(刘楠楠), Yu-Hong Liu(刘宇宏), Jia-Min Li(李嘉敏), Xiao-Ying Li(李小英). Chin. Phys. B, 2016, 25(7): 074203.
[11] Experimental study of the dependences of retrieval efficiencies on time delay between magneto-optical-trap being turned off and optical storage
Li-Rong Chen(陈力荣), Zhong-Xiao Xu(徐忠孝), Ping Li(李萍), Ya-Fei Wen(温亚飞), Wei-Qing Zeng(曾炜卿), Yue-Long Wu(武跃龙), Long Tian(田龙), Shu-Jing Li(李淑静), Hai Wang(王海). Chin. Phys. B, 2016, 25(2): 024203.
[12] Observation of multi-Raman gain resonances in rubidium vapor
Jun Liu(刘俊), Dong Wei(卫栋), Jin-wen Wang(王金文), Ya Yu(余娅), Hua-jie Hu(胡华杰), Hong Gao(高宏), Fu-li Li(李福利). Chin. Phys. B, 2016, 25(11): 114204.
[13] Vacuum induced transparency and slow light phenomena in a two-level atomic ensemble controlled by a cavity
Guo Yu-Jie (郭玉杰), Nie Wen-Jie (聂文杰). Chin. Phys. B, 2015, 24(9): 094205.
[14] Beam propagation method for wide-fieldnonlinear wave mixing microscope
Lv Yong-Gang (吕永钢), Ji Zi-Heng (纪子衡), Yu Wen-Tao (于文韬), Shi Ke-Bin (施可彬). Chin. Phys. B, 2015, 24(9): 094211.
[15] Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage
Zhang Chun-Ling (张春玲), Chen Mei-Feng (陈美锋). Chin. Phys. B, 2015, 24(7): 070310.
No Suggested Reading articles found!