ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system |
Lei Shang(尚蕾)1, Bin Chen(陈彬)1,2,†, Li-Li Xing(邢丽丽)1, Jian-Bin Chen(陈建宾)1, Hai-Bin Xue(薛海斌)1, and Kang-Xian Guo(郭康贤)3 |
1 Department of Physics, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China; 2 Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan 030024, China; 3 Department of Physics, School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China |
|
|
Abstract We systematically investigate the four-wave mixing (FWM) spectrum in a dual-cavity hybrid optomechanical system, which is made up of one optical cavity with an ensemble of two-level atoms and another with a mechanical oscillator. In this work, we propose that the hybrid dual-cavity optomechanical system can be employed as a highly sensitive mass sensor due to the fact that the FWM spectrum generated in this system has a narrow spectral width and the intensity of the FWM can be easily tuned by controlling the coupling strength (cavity-cavity, atom-cavity). More fascinatingly, the dual-cavity hybrid optomechanical system can also be used as an all-optical switch in view of the easy on/off control of FWM signals by adjusting the atom-pump detuning to be positive or negative. The proposed schemes have great potential applications in quantum information processing and highly sensitive detection.
|
Received: 10 November 2020
Revised: 14 December 2020
Accepted manuscript online: 24 December 2020
|
PACS:
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
42.50.-p
|
(Quantum optics)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504258, 61775043, and 11805140) and the Natural Science Foundation of Shanxi Province, China (Grant Nos. 201801D221021 and 201801D221031). |
Corresponding Authors:
Bin Chen
E-mail: chenbin@tyut.edu.cn
|
Cite this article:
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤) Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system 2021 Chin. Phys. B 30 054209
|
[1] Seok H, Buchmann L F, Singh S and Meystre P 2012 Phys. Rev. A 86 063829 [2] Poot M and Zant H S J V D 2012 Phys. Rep. 511 273 [3] Aspelmeyer M, Meystre P and Schwab K 2012 Phys. Today 65 29 [4] Favero I and Karrai K 2009 Nat. Photon. 3 201 [5] Meystre P 2013 Ann. Phys. 525 215 [6] Aspelmeyer M, Kippenberg T J and Marquardt F 2013 Rev. Mod. Phys. 86 1391 [7] Marquardt F and Girvin S M 2009 Physics 2 40 [8] Metzger C H and Karrai K 2004 Nature 432 1002 [9] Kippenberg T J and Vahala K J 2008 Science 321 1172 [10] Aldana S, Bruder C and Nunnenkamp A 2014 Phys. Rev. A 90 063810 [11] Sete E A and Eleuch H 2012 Phys. Rev. A 85 043824 [12] Wang L D, Yan J K, Zhu X F and Chen B 2017 Phys. E 89 134 [13] Chen B, Wang X F, Yan J K and Zhu X F 2018 Superlattice. Microst. 113 301 [14] Bariani F, Seok H, Singh S, Vengalattore M and Meystre P 2015 Phys. Rev. A 92 043817 [15] Chen B, Wang L D, Zhang J and Xue H B 2016 Phys. Lett. A 380 798 [16] Asghari Nejad A, Askari H R and Baghshahi H R 2017 Chin. Phys. lett. 34 084205 [17] Yong H 2016 Phys. Rev. A 94 063804 [18] Mu Q X, Lang C and Zhang W Z 2019 Chin. Phys. B 28 114206 [19] Yong H 2015 Phys. Rev. A 91 013827 [20] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803 [21] Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520 [22] Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Lin Q, Hill J T, Chang D E and Painter 2011 Nature 472 69 [23] Harris S E, Field J E and Imamoglu A 1990 Phys. Rev. Lett. 64 1107 [24] Karuza M, Biancofiore C, Bawaj M, Molinelli C, Galassi M, Natali R, Tombesi P, Giuseppe G D and Vitali D 2013 Phys. Rev. A 88 013804 [25] Yan D, Wang Z H, Ren C N, Gao H, Li Y and Wu J H 2015 Phys. Rev. A 91 023813 [26] Wei W Y, Yu Y F and Zhang Z M 2018 Chin. Phys. B 27 034204 [27] Yan J K, Zhu X F and Chen B 2018 Chin. Phys. B 27 074214 [28] Asghari N A, Askari H R and Baghshahi H R 2017 Appl. Opt. 56 2816 [29] Zhu X F, Wang L D, Yan J K and Chen B 2018 Optik 154 139 [30] Thevenaz L 2008 Nat. Photon. 2 474 [31] Asghari N A, Askari H R and Baghshahi H R 2017 Chin. Phys. Lett. 34 084205 [32] Chang D E, Safavi-Naeini A H, Hafezi M and Painter 2011 New J. Phys. 13 023003 [33] Qiu W, Liu J J, Wang Y D, Yang Y J, Gao Y 2018 Opt. Commun. 413 207 [34] Bigelow M S, Lepeshkin N N and Boyd R W 2003 Science 301 5630 [35] Bigelow M S, Lepeshkin N N and Boyd R W 2003 Phys. Rev. Lett. 90 113903 [36] Wang Y P, Zhang Z C, Yu Y F and Zhang Z M 2019 Chin. Phys. B 28 014202 [37] Jiang C, Cui Y S and Liu H X 2013 Europhys. Lett. 104 34004 [38] Jiang L, Yuan X R, Cui Y S, Chen G B, Zuo F and Jiang C 2017 Phys. Lett. A 381 3289 [39] Wang X F and Chen B 2019 J. Opt. Soc. Am. B 36 162 [40] Chen H J, Wu H W, Yang J Y, Li X C, Sun Y J and Peng Y 2019 Nanoscale Res. Lett. 14 73 [41] Li Z Y, You X, Li Y M, Liu Y C and Peng K C 2018 Phys. Rev. A 97 033806 [42] Li Y Q and Xiao M 1996 Opt. Lett. 21 1064 [43] Deng L, Kozuma M, Hagley E W and Payne M G 2004 Phys. Rev. Lett. 88 143902 [44] Wu Y, Saldana J and Zhu Y 2005 Phys. Rev. A 67 013811 [45] Sun H, Fan S, Zhang H, Zhang H J and Gong S Q 2013 Phys. Rev. B 87 235310 [46] Nielsen M P, Shi X Y, Dichtl P, Maier S A and Oulton R F 2017 Science 358 1179 [47] Li Z P, Wang X L and Li C Y 2016 Laser Phys. Lett. 13 025402 [48] Zhou H, Gu T and Mcmillan J F, Petrone N, Zanda A V D, Hone J C and Yu M B 2014 Appl. Phys. Lett. 105 091111 [49] Ullah K 2019 Chin. Phys. B 28 114209 [50] Huang S and Agarwal G S 2010 Phys. Rev. A 81 033830 [51] Kippenberg T J and Vahala K J 2008 Science 321 1172 [52] Li J J and Zhu K D 2011 Phys. Rev. B 83 245421 [53] Li J J and Zhu K D 2011 Nanotechnology 22 055202 [54] Li J J and Zhu K D 2011 J. Appl. phys. 110 114308 [55] Agarwal G S and Puri R R 1986 Phys. Rev. A 33 1757 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|