Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 074208    DOI: 10.1088/1674-1056/27/7/074208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Estimation of photon counting statistics with imperfect detectors

Xiao-Chuan Han(韩晓川)1, Dong-Wei Zhuang(庄东炜)1, Yu-Xuan Li(李雨轩)1, Jun-Feng Song(宋俊峰)1, Yong-Sheng Zhang(张永生)2
1 State Key Laboratory on Integrated Opto-electronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
2 Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
Abstract  The study on photon counting statistics is of fundamental importance in quantum optics. We theoretically analyzed the imperfect detection of an arbitrary quantum state. We derived photon counting formulae for six typical quantum states (i.e., Fock, coherent, squeeze-vacuum, thermal, odd and even coherent states) with finite quantum efficiencies and dark counts based on multiple on/off detector arrays. We applied the formulae to the simulation of multiphoton number detections and obtained both the simulated and ideal photon number distributions of each state. A comparison between the results by using the fidelity and relative entropy was carried out to evaluate the detection scheme and help select detectors for different quantum states.
Keywords:  fidelity      on/off detector      photon number detection      relative entropy  
Received:  05 March 2018      Revised:  11 April 2018      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61627820, 11674306, 61590932, and 61377048).
Corresponding Authors:  Jun-Feng Song, Yong-Sheng Zhang     E-mail:  songjf@jlu.edu.cn;yshzhang@ustc.edu.cn

Cite this article: 

Xiao-Chuan Han(韩晓川), Dong-Wei Zhuang(庄东炜), Yu-Xuan Li(李雨轩), Jun-Feng Song(宋俊峰), Yong-Sheng Zhang(张永生) Estimation of photon counting statistics with imperfect detectors 2018 Chin. Phys. B 27 074208

[1] Kervalishvili P J 2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems, 12-14 Dec 2015, Cairo, Egypt p. 1
[2] Spiller T P 2003 Materials Today 6 30
[3] Erhard M, Fickler R, Krenn M and Zeilinger A 2018 Light:Science & Applications 7 17146
[4] Caspani L, Xiong C, Eggleton B J, Bajoni D, Liscidini M, Galli M, Morandotti R and Moss D J 2017 Light:Science & Applications 6 e17100
[5] Liu G Q and Pan X Y 2018 Chin Phys. B 27 020304
[6] Okada M, Kan T, Fuwa M, Takeda S, Yoshikawa J I, Loock P V and Furusawa A 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, 25-29 Jun. 2017 Munich Germany 2017, p. 1-1
[7] Djordjevic I B 2016 IEEE Photonics Journal 8 1
[8] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[9] Liang Z F, Ma S L, Xue H T, Ding F, Liu J L and Tang F L 2018 Chin. Phys. B 27 016801
[10] Lu F F and Wang C F 2016 Chin. Phys. Lett. 33 74202
[11] Ren X Z, He S, Cong H L and Wang X W 2012 Acta Phys. Sin. 61 124207
[12] Wakakuwa E, Soeda A and Murao M 2017 IEEE Transactions on Information Theory, p.1-1.
[13] Helstrom C W 1969 Journal of Statistical Physics 1 231
[14] Zhang J, Itzler M A, Zbinden H and Pan J W 2015 Light:Science & Applications 4 e286
[15] MunroW, Nemoto K, Beausoleil R and Spiller T 2005 Phys. Rev. A 71 033819
[16] Rosenberg D, Lita A E, Miller A J and Nam S W 2005 Phys. Rev. A 71 061803
[17] Rohde P P 2005 Journal of Optics B:Quantum and Semiclassical Optics 7 82
[18] Rohde P P, Webb J G, Huntington E H and Ralph T C 2007 New J. Phys. 9 233
[19] Eisaman M, Fan J, Migdall A and Polyakov S V 2011 Review of Scientific Instruments 82 071101
[20] Cova S, Ghioni M, Lacaita A, Samori C and Zappa F 1996 Appl. Opt. 35 1956
[21] Sperling J, Vogel W and Agarwal G S 2012 Phys. Rev. A 85 023820
[22] Hall B C 2013 Quantum Theory for Mathematicians (Berlin:Springer-Verlag) p. 53.
[23] Adamchik V 1997 Journal of Computational and Applied Mathematics 79 119
[24] Abramowitz M and Stegun I A (Ed.) 1972 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (9th printing) (Denver:Dream Books Company, LLC) p. 331
[25] Cozzini M, Ionicioiu R and Zanard P 2007 Phys. Rev. B 76 104420
[26] Callen H B 1998 Thermodynamics and an Introduction to Thermostatistics p. 27.
[27] Tan Y Z and Wu C F 2003 Journal of Natural Resources 1 017 (in Chinese)
[28] Kullback S and Leibler R A 1951 The Annals of Mathematical Statistics 22 79
[1] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[2] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[3] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[4] Alternative non-Gaussianity measures for quantum states based on quantum fidelity
Cheng Xiang(向成), Shan-Shan Li(李珊珊), Sha-Sha Wen(文莎莎), and Shao-Hua Xiang(向少华). Chin. Phys. B, 2022, 31(3): 030306.
[5] Passively stabilized single-photon interferometer
Hai-Long Liu(刘海龙), Min-Jie Wang(王敏杰), Jia-Xin Bao(暴佳鑫), Chao Liu(刘超), Ya Li(李雅), Shu-Jing Li(李淑静), and Hai Wang(王海). Chin. Phys. B, 2022, 31(11): 110306.
[6] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[7] Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler
Huikai Xu(徐晖凯), Weiyang Liu(刘伟洋), Zhiyuan Li(李志远), Jiaxiu Han(韩佳秀), Jingning Zhang(张静宁), Kehuan Linghu(令狐克寰), Yongchao Li(李永超), Mo Chen(陈墨), Zhen Yang(杨真), Junhua Wang(王骏华), Teng Ma(马腾), Guangming Xue(薛光明), Yirong Jin(金贻荣), and Haifeng Yu(于海峰). Chin. Phys. B, 2021, 30(4): 044212.
[8] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[9] Coherence measures based on sandwiched Rényi relative entropy
Jianwei Xu(胥建卫). Chin. Phys. B, 2020, 29(1): 010301.
[10] Quantifying quantum non-Markovianity via max-relative entropy
Yu Luo(罗宇), Yongming Li(李永明). Chin. Phys. B, 2019, 28(4): 040301.
[11] Average fidelity estimation of twirled noisy quantum channel using unitary 2t-design
Linxi Zhang(张林曦), Changhua Zhu(朱畅华), Changxing Pei(裴昌幸). Chin. Phys. B, 2019, 28(1): 010304.
[12] Identifying the closeness of eigenstates in quantum many-body systems
Hai-bin Li(李海彬), Yang Yang(杨扬), Pei Wang(王沛), Xiao-guang Wang(王晓光). Chin. Phys. B, 2017, 26(8): 080502.
[13] An intermediate state of T7 RNA polymerase provides another pathway of nucleotide selection
Zhan-Feng Wang(王展峰), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业), Ping Xie(谢平). Chin. Phys. B, 2017, 26(10): 100203.
[14] Fidelity between Gaussian mixed states with quantum state quadrature variances
Hai-Long Zhang(张海龙), Chun Zhou(周淳), Jian-Hong Shi(史建红), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2016, 25(4): 040304.
[15] Computational investigations on polymerase actions in gene transcription and replication: Combining physical modeling and atomistic simulations
Jin Yu(喻进). Chin. Phys. B, 2016, 25(1): 018706.
No Suggested Reading articles found!