Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 074210    DOI: 10.1088/1674-1056/27/7/074210
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Novel single-transverse-mode control of VCSELs with dielectric mode filter

Lei Xiang(向磊)1,2, Xing Zhang(张星)1, Jian-Wei Zhang(张建伟)1, You-Wen Huang(黄佑文)1,2, Yong-Qiang Ning(宁永强)1, Li-Jun Wang(王立军)1
1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We establish a novel method of controlling the transverse modes of vertical cavity surface emitting lasers (VCSELs) to achieve 1 mW single-fundamental-mode lasing. A dielectric mode filter is installed on top of the VCSEL. The dielectric layer (SiO2) is deposited and patterned to modify the mirror reflectivity across the oxide aperture via antiphase reflections. This mode selection is nondestructive and universally applicable for other structures under single transverse mode. Destructive etching techniques (dry/wet) or epitaxial regrowth are also not required. This method simplifies the preparation process and improves the repeatability of the device. Measurements show that under continuous-wave current injection, the side-mode suppression ratio exceeds 30 dB.
Keywords:  single-mode      dielectric mode filter      anti-phase reflection      mirror reflectivity      VCSEL  
Received:  24 January 2018      Revised:  03 April 2018      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.62.Fi (Laser spectroscopy)  
Fund: Project supported by the National Key Research and Development Project, China (Grant No. 2017YFB0503200), the National Natural Science Foundation of China (Grant Nos. 61434005, 61474118, 11774343, and 11674314), the Science and Technology Program of Jilin Province, China (Grant No. 20160203013GX), and the Youth Innovation Promotion Association, China (Grant No. 2017260).
Corresponding Authors:  Xing Zhang     E-mail:  zhangx@ciomp.ac.cn

Cite this article: 

Lei Xiang(向磊), Xing Zhang(张星), Jian-Wei Zhang(张建伟), You-Wen Huang(黄佑文), Yong-Qiang Ning(宁永强), Li-Jun Wang(王立军) Novel single-transverse-mode control of VCSELs with dielectric mode filter 2018 Chin. Phys. B 27 074210

[1] Zhao Z B, Xu C, Xie Y Y, Zhou K, Liu F and Shen G D 2012 Chin. Phys. B 21 034206
[2] Huang Y, Zhang X, Zhang J, et al. 2017 IEEE Photon. J. 9 1
[3] Siegle T, Schierle S, Kraemmer S, et al. 2017 Light-Sci. Appl. 6 e16224
[4] Mei Y, Weng G E, Zhang B P, et al. 2017 Light-Sci. Appl. 6 e16199
[5] Liu A J, Qu H W, Xing M X, et al. 2010 Chin. Sci. Bull. 55 111
[6] Xie Y Y, Kan Q, Xu C, et al. 2012 IEEE Photonic. Tech. L. 24 464
[7] Furukawa A, Sasaki S, Hoshi M, et al. 2004 Appl. Phys. Lett. 85 5161
[8] Zhou D and Mawst L J 2002 IEEE J. Quantum Elect. 38 1599
[9] Morgan R A, Guth G D, Focht M W, et al. 1993 IEEE Photonic. Tech. L. 5 374
[10] Young E W, Choquette K D, Chuang S L, et al. 2001 IEEE Photonic. Tech. L. 13 927
[11] Syrbu A, Mereuta A, Iakovlev V, et al. 2008 IEEE Optical Fiber Communication National Fiber Optic Engineers Conference pp. 1-3
[12] Wei S M, Xu C, Deng J, Zhu Y X, Mao M M, Xie Y Y, Xu K, Cao T and Liu J C 2012 Chin. Phys. Lett. 29 084208
[13] Unold H J and Grabherr M 1999 Electron. Lett. 35 1340
[14] Haglund A, Gustavsson J S, Vukusic J, et al. 2004 IEEE Photonic. Tech. L. 16 368
[15] Xiang L, Zhang X, Zhang J W, Ning Y Q, Hofmann W and Wang L J 2017 Chin. Phys. B 26 074209
[16] Zhang J W, Zhang X, Zhu H B, et al. 2015 Opt. Express 23 14763
[17] Weigl B, Grabherr M, Jung C and Jager R 1997 IEEE J. Sel. Top. Quant. 3 409
[18] Kesler B, O'Brien T, Su G L, et al. 2016 IEEE Photonic. Tech. L. 28 1497
[19] Unold H J, Mahmoud S W Z, Jager R, et al. 2001 IEEE J. Sel. Top. Quant. 7 386
[1] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[2] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[3] High power semiconductor laser array with single-mode emission
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
[4] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[5] Single-mode antiresonant terahertz fiber based on mode coupling between core and cladding
Shuai Sun(孙帅), Wei Shi(史伟), Quan Sheng(盛泉), Shijie Fu(付士杰), Zhongbao Yan(闫忠宝), Shuai Zhang(张帅), Junxiang Zhang(张钧翔), Chaodu Shi(史朝督), Guizhong Zhang(张贵忠), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(12): 124205.
[6] Steady and optimal entropy squeezing for three types of moving three-level atoms coupled with a single-mode coherent field
Wen-Jin Huang(黄文进) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010304.
[7] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[8] Polarization control and tuning efficiency of tunable vertical-cavity surface-emitting laser with internal-cavity sub-wavelength grating
Xiao-Long Wang(王小龙), Yong-Gang Zou(邹永刚), Zhi-Fang He(何志芳), Guo-Jun Liu(刘国军), Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2020, 29(8): 084208.
[9] Oxide-aperture-dependent output characteristics of circularly symmetric VCSEL structure
Wen-Yuan Liao(廖文渊), Jian Li(李健), Chuan-Chuan Li(李川川), Xiao-Feng Guo(郭小峰), Wen-Tao Guo(郭文涛), Wei-Hua Liu(刘维华), Yang-Jie Zhang(张杨杰), Xin Wei(韦欣), Man-Qing Tan(谭满清). Chin. Phys. B, 2020, 29(2): 024201.
[10] Self-starting all-fiber PM Er: laser mode locked by a biased nonlinear amplifying loop mirror
Ke Yin(殷科), Yi-Ming Li(李仪茗), Yan-Bin Wang(王彦斌), Xin Zheng(郑鑫), Tian Jiang(江天). Chin. Phys. B, 2019, 28(12): 124203.
[11] Stable single-mode operation of 894.6 nm VCSEL at high temperatures for Cs atomic sensing
Lei Xiang(向磊), Xing Zhang(张星), Jian-Wei Zhang(张建伟), Yong-Qiang Ning(宁永强), Werner Hofmann, Li-Jun Wang(王立军). Chin. Phys. B, 2017, 26(7): 074209.
[12] Enhanced thermal stability of VCSEL array by thermoelectric analysis-based optimization of mesas distribution
Chu-Yu Zhong(钟础宇), Xing Zhang(张星), Di Liu(刘迪), Yong-Qiang Ning(宁永强), Li-Jun Wang(王立军). Chin. Phys. B, 2017, 26(6): 064204.
[13] Simplified modeling of frequency behavior in photonic crystal vertical cavity surface emitting laser with tunnel injection quantum dot in active region
Mehdi Riahinasab, Vahid Ahmadi, Elham Darabi. Chin. Phys. B, 2017, 26(2): 024211.
[14] Reconfigurable dynamic all-optical chaotic logic operations in an optically injected VCSEL
Dong-Zhou Zhong(钟东洲), Ge-Liang Xu(许葛亮), Wei Luo(罗伟), Zhen-Zhen Xiao(肖珍珍). Chin. Phys. B, 2017, 26(12): 124204.
[15] Frequency-stabilized Yb:fiber comb with a tapered single-mode fiber
Yang Xie(谢阳), Hai-Nian Han(韩海年), Long Zhang(张龙), Zi-Jiao Yu(于子蛟), Zheng Zhu(朱政), Lei Hou(侯磊), Li-Hui Pang(庞利辉), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(4): 044208.
No Suggested Reading articles found!