|
|
Momentum distribution and non-local high order correlation functions of 1D strongly interacting Bose gas |
EJKP Nandani1,2,3, Xi-Wen Guan(管习文)1,4 |
1 Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Department of Mathematics, University of Ruhuna, Matara 81000, Sri Lanka;
4 Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200, Australia |
|
|
Abstract The Lieb-Liniger model is a prototypical integrable model and has been turned into the benchmark physics in theoretical and numerical investigations of low-dimensional quantum systems. In this note, we present various methods for calculating local and nonlocal M-particle correlation functions, momentum distribution, and static structure factor. In particular, using the Bethe ansatz wave function of the strong coupling Lieb-Liniger model, we analytically calculate the two-point correlation function, the large moment tail of the momentum distribution, and the static structure factor of the model in terms of the fractional statistical parameter α=1-2/γ, where γ is the dimensionless interaction strength. We also discuss the Tan's adiabatic relation and other universal relations for the strongly repulsive Lieb-Liniger model in terms of the fractional statistical parameter.
|
Received: 02 May 2018
Revised: 16 May 2018
Accepted manuscript online:
|
PACS:
|
03.75.Ss
|
(Degenerate Fermi gases)
|
|
03.75.Hh
|
(Static properties of condensates; thermodynamical, statistical, and structural properties)
|
|
02.30.Ik
|
(Integrable systems)
|
|
05.70.Ce
|
(Thermodynamic functions and equations of state)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374331 and 11534014) and the National Key R&D Program of China (Grant No. 2017YFA0304500). This work has been partially supported by CAS-TWAS President's Fellowship for International PhD Students. |
Corresponding Authors:
Xi-Wen Guan
E-mail: xwe105@wipm.ac.cn
|
Cite this article:
EJKP Nandani, Xi-Wen Guan(管习文) Momentum distribution and non-local high order correlation functions of 1D strongly interacting Bose gas 2018 Chin. Phys. B 27 070306
|
[1] |
Lieb E H and Liniger W 1963 Phys. Rev. Lett. 130 1605
|
[2] |
Yang C N and Yang C P 1969 J. Math, Phys. 10 1115
|
[3] |
Korepin V E, Bogoliubov N M and Izergin A G 1993 (Cambridge:Cambridge University Press)
|
[4] |
Jiang Y Z, Chen Y Y and Guan X W 2015 Chin. Phys. B 24 050311
|
[5] |
Paredes B, Widera A, Murg V, Mandel O, Fölling S, Cirac I, Shlyapnikov G V, Hänsch T W and Bloch I 2004 Nature 429 277
|
[6] |
Kinoshita T, Wenger T and Weiss D S 2004 Science 305 1125
|
[7] |
Haller E, Gustavsson M, Mark M J, Danzl J G, Hart R, Pupillo G and Nagerl H C 2009 Science 325 1224
|
[8] |
Yang B, Chen Y Y, Zheng Y G, Sun H, Dai H N, Guan X W, Yuan Z S and Pan J W 2017 Phys. Rev. Lett. 119 165701
|
[9] |
Kinoshita T, Wenger T and Weiss D S 2006 Nature 440 900
|
[10] |
Hofferberth S, Lesanovsky I, Fischer B, Schumm T and Schmiedmayer J 2007 Nature 449 324
|
[11] |
Astrakharchik G E and Giorgini S 2006 J. Phys. B:At. Mol. Opt. Phys. 39 S1
|
[12] |
Astrakharchik G E and Giorgini S 2003 Phys. Rev. A 68 031602(R)
|
[13] |
Gangardt D M and Shlyapnikov G V 2003 New J. Phys. 5 79
|
[14] |
Kheruntsyan K V, Gangardt D M, Drummond P D and Shlyapnikov G V 2003 Phys.Rev. Lett. 91 040403
|
[15] |
Gangardt D M and Shlyapnikov G V 2003 Phy. Rev. Lett. 90 010401
|
[16] |
Kinoshita T, Wenger T and Weiss D S 2005 Phys. Rev. Lett. 95 190406
|
[17] |
Kormos M, Mussardo G and Trombettoni A 2010 Phys. Rev. A 81 043606
|
[18] |
Kormos M, Chou Y Z and Imambekov A 2011 Phys. Rev. Lett. 107 230405
|
[19] |
Nandani E J K P, Romer R A, Tan S and Guan X W 2016 New J. Phys. 18 055014
|
[20] |
Caux J S 2009 J. Math. Phys. 50 095214
|
[21] |
Caux J S and Calabrese P 2006 Phys. Rev. A 74 031605
|
[22] |
Panfil M and Caux J S 2014 Phys. Rev. A 89 033605
|
[23] |
Girardeau M 1960 J. Math. Phys. 1 516
|
[24] |
Cheon T and Shigehara T 1999 Phys. Rev. Lett. 82 2536
|
[25] |
Cherny A Y and Brand J 2006 Phys. Rev. A 73 023612
|
[26] |
Lenard A 1966 J. Math. Phys. 7 1268
|
[27] |
Lenard A 1964 J. Math. Phys. 5 930
|
[28] |
Caux J S, Calabrese P and Slavnov N A 2007 J. Stat. Mech. P01008
|
[29] |
Forrester P J, Frankel N E, Garoni T M and Witte N S 2003 Phys. Rev. A 67 043607
|
[30] |
Forrester P J, Frankel N E and Makin M I 2006 Phys. Rev. A 74 043614
|
[31] |
Jimbo M and Miwa T 1981 Phys. Rev. D 24 3169
|
[32] |
Santachiara R and Calabrase P 2008 J. Stat. Mech. P06005
|
[33] |
Vaidya H G and Tracy C A 1979 Phys. Rev. Lett. 42 3
|
[34] |
Jimbo M, Miwa T, Mori Y and Sato M 1980 Physica D 1 80
|
[35] |
Vaidya H G and Tracy C A 1979 J. Maths. Phys. 20 2291
|
[36] |
Olshani M and Dunjko V 2003 New J. Phys. 5 98
|
[37] |
Olshani M and Dunjko V 2003 Phys. Rev. Lett. 91 090401
|
[38] |
Olshani M, Dunjko V, Minguzzi A and Lan G 2017 Phys. Rev. A 96 033624
|
[39] |
Tan S 2008 Ann. Phys. 323 2952
|
[40] |
Tan S 2008 Ann. Phys. 323 2987
|
[41] |
Tan S 2008 Ann. Phys. 323 2971
|
[42] |
Barfknecht R E, Brouzos I and Foerster A 2015 Phys. Lett. A 91 043640
|
[43] |
Zhang S and Leggett A J 2009 Phys. Rev. A 79 023601
|
[44] |
Werner F, Tarruell L and Castin Y 2009 Eur. Phys. J. B 68 401
|
[45] |
Braaten E and Platter L 2009 Laser Physics 19 550
|
[46] |
Pâtu O I and Klümper A 2017 Phys. Rev. A 96 063612
|
[47] |
Drut J E, Lahde T A and Ten T 2011 Phys. Rev. Lett. 106 205302
|
[48] |
Barth M and Zwerger W 2011 Ann. Phys. 326 2544
|
[49] |
Yu Z, Thywissen J H and Zhang S 2015 Phys. Rev. Lett. 115 135304
|
[50] |
Yoshida S M and Ueda M 2015 Phys. Rev. Lett. 115 135303
|
[51] |
Cui X 2016 Phys. Rev. A 94 043636
|
[52] |
Sekino Y, Tan S and Nishidha Y 2018 Phys. Rev. A 97 013621
|
[53] |
Minguzzi A, Vignolo P and Tosi M P 2002 Phys. Lett. A 294 222
|
[54] |
Wei Xu and Rigol M 2015 Phys. Rev. A 92 063623
|
[55] |
Wild R J, Makotyn P, Pino J M, Cornell E A and Jin D S 2012 Phys. Rev. Lett 108 145305
|
[56] |
Yin X, Guan X W, Zhang Y, Su H and Zhang S 2018 arXiv:1803.05119
|
[57] |
Guan X W 2014 Int. J. of Mod. Phys. B 28 1430015
|
[58] |
Fabbri N, Panfil M, Clement D, Fallani L, Inguscio M, Fort C and Caux J S 2015 Phys. Rev. A 91 043617
|
[59] |
Brand J and Cherny A Y 2005 Phys. Rev. A. 72 033619
|
[60] |
Wu Y S 1994 Phys. Rev. Lett. 73 922
|
[61] |
Bernard D and Wu Y S 1994 cond-mat/9404025v2
|
[62] |
Ha Z N C 1994 Phys. Rev. Lett. 73 1574
|
[63] |
Murthy M V N and Shankar R 1994 Phys. Rev. Lett. 73 3331
|
[64] |
Ha Z N C 1995 Nucl. Phys. B 435 604
|
[65] |
Batchelor M T, Guan X W and Oelkers N 2006 Phys. Rev. Lett. 96 210402
|
[66] |
Batchelor B T and Guan X W 2007 Laser Phys. Lett. 4 77
|
[67] |
Mehta M L 1970 Random Matrices (Amesterdan:Elsever Academy Press)
|
[68] |
Pâtu O I and Klümper A 2017 Phys. Rev. A 96 063612
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|