Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 047701    DOI: 10.1088/1674-1056/ac3223
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of anode area on the sensing mechanism of vertical GaN Schottky barrier diode temperature sensor

Ji-Yao Du(都继瑶)1, Xiao-Bo Li(李小波)2, Tao-Fei Pu(蒲涛飞)2,†, and Jin-Ping Ao(敖金平)2
1 School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, China;
2 Institute of Technology and Science, Tokushima University, Tokushima, Japan
Abstract  Effect of anode area on temperature sensing ability is investigated for a vertical GaN Schottky-barrier-diode sensor. The current-voltage-temperature characteristics are comparable to each other for Schottky barrier diodes with different anode areas, excepting the series resistance. In the sub-threshold region, the contribution of series resistance on the sensitivity can be ignored due to the relatively small current. The sensitivity is dominated by the current density. A large anode area is helpful for enhancing the sensitivity at the same current level. In the fully turn-on region, the contribution of series resistance dominates the sensitivity. Unfortunately, a large series resistance degrades the temperature error and linearity, implying that a larger anode area will help to decrease the series resistance and to improve the sensing ability.
Keywords:  GaN      temperature sensor      Schottky contact      vertical diode  
Received:  03 June 2021      Revised:  14 October 2021      Accepted manuscript online:  22 October 2021
PACS:  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  52.59.Mv (High-voltage diodes)  
  82.80.Pv (Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))  
Fund: This work was supported by the Scientific Research Support Foundation for Introduced High-Level Talents of Shenyang Ligong University (Grant No. 1010147000914) and the Science and Technology Program of Ningbo (Grant No. 2019B10129).
Corresponding Authors:  Tao-Fei Pu     E-mail:  fbc_ptf@126.com

Cite this article: 

Ji-Yao Du(都继瑶), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), and Jin-Ping Ao(敖金平) Effect of anode area on the sensing mechanism of vertical GaN Schottky barrier diode temperature sensor 2022 Chin. Phys. B 31 047701

[1] Tsou C W, Wei K P, Lian Y W et al. 2015 IEEE Electron Device Lett. 37 70
[2] Bahat-Treidel E, Hilt O, Zhytnytska R et al. 2012 IEEE Electron Device Lett. 33 357
[3] Chang T F, Huang C F, Yang T Y et al. 2015 Solid State Electron. 105 12
[4] Dang K, Zhang J, Zhou H et al. 2019 IEEE Trans. Ind. Electron. 67 6597
[5] Saitoh Y, Sumiyoshi K, Okada M et al. 2010 Appl. Phys. Exp. 3 081001
[6] Tanaka N, Hasegawa K, Yasunishi K et al. 2015 Appl. Phys. Exp. 8 071001
[7] Han S, Yang S, Sheng K 2018 IEEE Electron Device Lett. 39 572
[8] Yang T H, Fu H, Fu K et al. 2020 IEEE J. Electron Devices Soc. 8 857
[9] Liu Z, Wang J, Gu H et al. 2019 AIP Adv. 9 055016
[10] Ren B, Liao M, Sumiya M et al. 2017 Appl. Phys. Exp. 10 051001
[11] Tsurumi N, Ueno H, Murata T et al. 2010 IEEE Trans. Electron Devices 57 980
[12] Zhou Y, Wang D, Ahyi C et al. 2007 J. Appl. Phys. 101 024506
[13] Li X, Pu T, Li X et al. 2020 IEEE Trans. Electron Devices 67 1171
[14] Li L, Chen J, Gu X et al. 2018 Superlattices Microstruct. 123 274
[15] Liu D P, Li X B, Pu T F et al. 2021 Chin. Phys. B 30 038101
[16] Wang Y, Pu T, Li X et al. 2021 Mater. Sci. Semicond. Proc. 125 105628
[17] Li L, Kishi A, Liu Q et al. 2014 IEEE J. Electron Devices Soc. 2 168
[18] Li L, Kishi A, Shiraishi T et al. 2013 Jpn. J. Appl. Phys. 52 11
[19] Yildirim N, Ejderha K and Turut A 2010 J. Appl. Phys. 108 114506
[20] Rao S, Pangallo G, Pezzimenti F et al. 2015 IEEE Electron Device Lett. 36 720
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[3] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[4] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[5] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[6] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[7] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[8] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[9] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[10] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[11] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[12] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[13] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[14] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[15] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
No Suggested Reading articles found!