Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 068906    DOI: 10.1088/1674-1056/ac4e04
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Effects of heterogeneous adoption thresholds on contact-limited social contagions

Dan-Dan Zhao(赵丹丹)1, Wang-Xin Peng(彭王鑫)2, Hao Peng(彭浩)1,3, and Wei Wang(王伟)4,†
1 College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China;
2 College of Information, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang 322100, China;
3 Shanghai Key Laboratory of Integrated Administration Technologies for Information Security, Shanghai 200240, China;
4 School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
Abstract  Limited contact capacity and heterogeneous adoption thresholds have been proven to be two essential characteristics of individuals in natural complex social systems, and their impacts on social contagions exhibit complex nature. With this in mind, a heterogeneous contact-limited threshold model is proposed, which adopts one of four threshold distributions, namely Gaussian distribution, log-normal distribution, exponential distribution and power-law distribution. The heterogeneous edge-based compartmental theory is developed for theoretical analysis, and the calculation methods of the final adoption size and outbreak threshold are given theoretically. Many numerical simulations are performed on the Erdös-Rényi and scale-free networks to study the impact of different forms of the threshold distribution on hierarchical spreading process, the final adoption size, the outbreak threshold and the phase transition in contact-limited propagation networks. We find that the spreading process of social contagions is divided into three distinct stages. Moreover, different threshold distributions cause different spreading processes, especially for some threshold distributions, there is a change from a discontinuous first-order phase transition to a continuous second-order phase transition. Further, we find that changing the standard deviation of different threshold distributions will cause the final adoption size and outbreak threshold to change, and finally tend to be stable with the increase of standard deviation.
Keywords:  social contagions      threshold distribution      heterogeneous adoption thresholds      limited contact  
Received:  06 October 2021      Revised:  29 December 2021      Accepted manuscript online:  24 January 2022
PACS:  89.75.Hc (Networks and genealogical trees)  
  87.19.X- (Diseases)  
  87.23.Ge (Dynamics of social systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62072412, 61902359, 61672467, and 61672468), the Social Development Project of Zhejiang Provincial Public Technology Research (Grant No. 2016C33168), Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ19F030010), and the Opening Project of Shanghai Key Laboratory of Integrated Administration Technologies for Information Security (Grant No. AGK2018001).
Corresponding Authors:  Wei Wang     E-mail:  wwzqbc@cqmu.edu.cn,wwzqbx@hotmail.com

Cite this article: 

Dan-Dan Zhao(赵丹丹), Wang-Xin Peng(彭王鑫), Hao Peng(彭浩), and Wei Wang(王伟) Effects of heterogeneous adoption thresholds on contact-limited social contagions 2022 Chin. Phys. B 31 068906

[1] Jeong H M, Mason S P, Barabási A and Oltvai Z N 2001 Nature 411 41
[2] Dunne J A, Williams R J and Martinez N D 2002 Proc. Natl. Acad. Sci. USA 99 12917
[3] Motter A E, Myers S A, Anghel M and Nishikawa T 2013 Nat. Phys. 9 191
[4] Faloutsos M, Faloutsos P and Faloutsos C 1999 ACM SIGCOMM Comput. Commun. Rev. 29 251
[5] Ebel H, Mielsch L I and Bornholdt S 2002 Phys. Rev. E 66 035103
[6] Serrano M A and Bogu ná M 2003 Phys. Rev. E 68 015101
[7] Yang Y Z, Hu M and Huang T Y 2020 Chin. Phys. B 29 088903
[8] Wang W, Li W Y, Lin T, Wu T, Pan L M and Liu Y B 2021 Appl. Math. Comput. 126793 (In Press)
[9] Pan L M, Wang W, Tian L and Lai Y C 2021 Phys. Rev. E 103 012302
[10] Watts D J and Strogatz S H 1998 Nature 393 440
[11] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[12] Newman M E J 2003 SIAM Rev. 45 167
[13] Boccaletti S, Bianconi G, Criado R, del Genio C I, Gómez-Gardeñes J, Romance M, Sendiña-Nadal I, Wang Z and Zanin M 2014 Phys. Rep. 544 1
[14] Hawoong Jeong R A and Barabási A 2000 Nature 406 378
[15] Callaway D S, Newman M E J, Strogatz S H and Watts D J 2000 Phys. Rev. Lett. 85 5468
[16] Cohen R, Erez K, ben-Avraham D and Havlin S 2000 Phys. Rev. Lett. 85 4626
[17] Song C, Havlin S and Makse H A 2005 Nature 433 392
[18] Arenas A, Diaz-Guilera A, Kurths J, Moreno Y and Zhou C 2008 Phys. Rep. 469 93
[19] Radicchi F 2015 Nat. Phys. 11 597
[20] Li D Q, Fu B W, Wang Y P, Lu G Q, Berezin Y, Stanley H E and Havlin S 2015 Proc. Natl. Acad. Sci. USA 112 669
[21] Zhang M, Wang X J, Jin L, Song M and Liao Z H 2020 Chin. Phys. B 29 096401
[22] Liu J 2021 Chin. Phys. B 30 016401
[23] Li W Y, Xue X, Pan L M, Lin T and Wang W 2022 Appl. Math. Comput. 412 126595
[24] Saumell-Mendiola A, Serrano M A and Boguná M 2012 Phys. Rev. E 86 026106
[25] Sun Y, Liu C, Zhang C X and Zhang Z K 2014 Phys. Lett. A 378 635
[26] Gosak M, Duh M, Markovi R and Perc M 2021 New J. Phys. 23 043039
[27] Brett T, Loukas G, Moreno Y and Perra N 2019 Phys. Rev. E 99 050303
[28] Okamoto T and Ishida Y 2002 Syst. Comput. Jpn. 33 81
[29] Feng Y, Ding L, Huang Y H and Guan Z H 2016 Chin. Phys. B 25 128903
[30] Lu Y L, Jiang G P and Song Y R 2012 Chin. Phys. B 21 100207
[31] Zan Y 2018 Chaos, Solitons & Fractals 110 191
[32] Cheng Y, Huo L and Zhao L 2021 Inf. Sci. 564 237
[33] Liu W, Wu X, Yang W, Zhu X and Zhong S 2019 Appl. Math. Comput. 343 214
[34] Chen N, Zhu X and Chen Y 2019 Physica A 523 671
[35] Zhang Y, Su Y, Li W and Liu H 2019 Chaos, Solitons & Fractals 121 168
[36] Gao X and Tian L 2019 Physica A 514 226
[37] Karsai M, Iniguez G, Kaski K and Kertesz J 2014 J. R. Soc. Interface 11 20140694
[38] Ma Y, Xue X, Cai M and Wang W 2020 Chin. Phys. B 29 128902
[39] Zhan X X, Liu C, Zhou G, Zhang Z K, Sun G Q, Zhu J and Jin Z 2018 Appl. Math. Comput. 332 437
[40] Guo H, Wang Z, Sun S and Xia C 2021 Phys. Lett. A 398 127282
[41] Zhu L, Liu W and Zhang Z 2021 Math. Comput. Simul. 188 268
[42] Wang W, Liu Q H, Liang J, Hu Y and Zhou T 2019 Phys. Rep. 820 1
[43] Peng X L and Zhang Y D 2021 Chin. Phys. B 30 058901
[44] Granovetter M S 1973 Am. J. Sociol. 78 1360
[45] Watts D J 2002 Proc. Natl. Acad. Sci. USA 99 5766
[46] Wang W, Tang M, Zhang H F and Lai Y C 2015 Phys. Rev. E 92 012820
[47] Wang W, Tang M, Shu P and Wang Z 2016 New J. Phys. 18 013029
[48] Wang X, Lan Y and Xiao J 2019 Physica A 531 121721
[49] Backlund V P, Saramaki J and Pan R K 2014 Phys. Rev. E 89 062815
[50] Unicomb S, I niguez G and Karsai M 2018 Sci. Rep. 8 3094
[51] Han L L, Lin Z H, Tang M, Zhou J, Zou Y and Guan S G 2020 Phys. Rev. E 101 042308
[52] Zhu X, Tian H, Chen X, Wang W and Cai S 2018 New J. Phys. 20 125002
[53] Karampourniotis P D, Sameet S, Szymanski B K, Gyorgy K and Adriana B L 2015 PLoS One 10 e0143020
[54] Peng H, Peng W X, Zhao D D and Wang W 2020 Appl. Math. Comput. 386 125504
[55] Ren J, Yang Q, Zhu Y, Zhu X and Cai S 2020 IEEE Acc. 8 61905
[56] Bao P, Shen H W and Cheng X Q 2013 PlOS one 8 e76027
[57] Yang Z, Cui A X and Zhou T 2011 Physica A 390 4543
[58] Chatterjee S and Durrett R 2009 Ann. Probab. 37 2332
[59] Xiong F, Zheng Y, Wang H, Wang X and Chen H 2021 Future Generation Computer Systems 114 307
[60] Jiang J and Zhou T 2018 Physica A 508 414
[61] Tian G and Wang Z C 2020 Appl. Math. Lett. 102 106121
[62] Wang W, Shu P P, Zhu Y X, Tang M and Zhang Y C 2015 Chaos 25 103102
[63] Zhu Y X, Cao Y Y, Chen T, Qiu X Y, Wang W and Hou R 2018 Chaos Solitons & Fractals 114 408
[64] Karrer B and Newman M E J 2010 Phys. Rev. E 82 016101
[65] Karrer B, Newman M E J and Zdeborová L 2014 Phys. Rev. Lett. 113 208702
[66] Erdös P and Rényi A 1959 Publ. Math. Debrecen 6 290
[67] Catanzaro M, Bogu ná M and Pastor-Satorras R 2005 Phys. Rev. E 71 027103
[68] Lou J 2007 Ecology 88 2427
[69] Chen W, Schroder M, D'Souza R M, Sornette D and Nagler J 2014 Phys. Rev. Lett. 112 155701
[1] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[2] A novel similarity measure for mining missing links in long-path networks
Yijun Ran(冉义军), Tianyu Liu(刘天宇), Tao Jia(贾韬), and Xiao-Ke Xu(许小可). Chin. Phys. B, 2022, 31(6): 068902.
[3] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[4] Cascading failures of overload behaviors using a new coupled network model between edges
Yu-Wei Yan(严玉为), Yuan Jiang(蒋沅), Rong-Bin Yu(余荣斌), Song-Qing Yang(杨松青), and Cheng Hong(洪成). Chin. Phys. B, 2022, 31(1): 018901.
[5] Evolution mechanism of Weibo top news competition
Fuzhong Nian(年福忠), Jingzhou Li(李经洲), and Xin Guo(郭鑫). Chin. Phys. B, 2021, 30(12): 128901.
[6] Identification of unstable individuals in dynamic networks
Dongli Duan(段东立), Tao Chai(柴涛), Xixi Wu(武茜茜), Chengxing Wu(吴成星), Shubin Si(司书宾), and Genqing Bian(边根庆). Chin. Phys. B, 2021, 30(9): 090501.
[7] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[8] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[9] Contagion dynamics on adaptive multiplex networks with awareness-dependent rewiring
Xiao-Long Peng(彭小龙) and Yi-Dan Zhang(张译丹). Chin. Phys. B, 2021, 30(5): 058901.
[10] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[11] Modularity-based representation learning for networks
Jialin He(何嘉林), Dongmei Li(李冬梅), and Yuexi Liu(刘阅希). Chin. Phys. B, 2020, 29(12): 128901.
[12] Shortest path of temporal networks: An information spreading-based approach
Yixin Ma(马一心), Xiaoyu Xue(薛潇雨), Meng Cai(蔡萌), and Wei Wang(王伟). Chin. Phys. B, 2020, 29(12): 128902.
[13] Finite density scaling laws of condensation phase transition in zero-range processes on scale-free networks
Guifeng Su(苏桂锋), Xiaowen Li(李晓温), Xiaobing Zhang(张小兵), Yi Zhang(张一). Chin. Phys. B, 2020, 29(8): 088904.
[14] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[15] Major impact of queue-rule choice on the performance of dynamic networks with limited buffer size
Xiang Ling(凌翔), Xiao-Kun Wang(王晓坤), Jun-Jie Chen(陈俊杰), Dong Liu(刘冬), Kong-Jin Zhu(朱孔金), Ning Guo(郭宁). Chin. Phys. B, 2020, 29(1): 018901.
No Suggested Reading articles found!