Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 063202    DOI: 10.1088/1674-1056/ac4e05

Photoelectron momentum distributions of Ne and Xe dimers in counter-rotating circularly polarized laser fields

Zhi-Xian Lei(雷志仙), Qing-Yun Xu(徐清芸), Zhi-Jie Yang(杨志杰), Yong-Lin He(何永林), and Jing Guo(郭静)
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  The strong-field ionization of dimers is investigated theoretically in counter-rotating circularly polarized laser fields. By numerically solving the two-dimensional (2D) time-dependent Schrödinger equation (TDSE) with the single-electron approximation (SEA) frame, we present the photoelectron momentum distributions (PMDs) and photoelectron angular distribution (PADs) of aligned Ne and Xe dimers. It is found that the PMDs and PADs strongly depend on the time delays by counter-rotating circularly polarized laser pulses. The results can be explained by the ultrafast photoionization model and the evolution of electron wave packets for Ne and Xe dimers. Besides, We make a comparison of PMDs between Ne atom and Ne dimer.
Keywords:  time-dependent Schrö      dinger equation, dimer, photoelectron momentum distributions, ultrafast photoionization model  
Received:  22 November 2021      Revised:  17 January 2022      Accepted manuscript online:  24 January 2022
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  32.80.Fb (Photoionization of atoms and ions)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074146).
Corresponding Authors:  Jing Guo     E-mail:

Cite this article: 

Zhi-Xian Lei(雷志仙), Qing-Yun Xu(徐清芸), Zhi-Jie Yang(杨志杰), Yong-Lin He(何永林), and Jing Guo(郭静) Photoelectron momentum distributions of Ne and Xe dimers in counter-rotating circularly polarized laser fields 2022 Chin. Phys. B 31 063202

[1] Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545
[2] Xiao F, Fan X H, Wang L, Zhang D W, Wu J H, Wang X W and Zhao Z X 2020 Chin. Phys. Lett. 37 114202
[3] Wang X W, Wang L, Xiao F, Zhang D W, Lü Z H, Yuan J M and Zhao Z X 2020 Chin. Phys. Lett. 37 023201
[4] Mourou G A, Labaune C L, Dunne M, Naumova N and Tikhonchuk V T 2007 Plasma Phys. Control. Fusion 49 B667
[5] Emma P, Akre R, Arthur J et al. 2010 Nat. Photon. 4 641
[6] Ishikawa T, Aoyagi H, Asaka T et al. 2012 Nat. Photon. 6 540
[7] Margaritondo G 2017 Nuovo Cimento Rivista Serie 40 411
[8] Elsaesser T 2017 Chem. Rev. 117 10621
[9] Elsaesser T and Woerner M 2014 J. Chem. Phys. 140 020901
[10] Miller R J D 2016 Faraday Discuss. 194 777
[11] Xu J L, Blaga C I, Agostini P and DiMauro L F 2016 J. Phys. B: At. Mol. Opt. Phys. 49 112001
[12] Nakajima T 2009 Phys. Rev. A 79 043414
[13] Agostini P, Fabre F, Mainfray G, Petite G and Rahman N K 1979 Phys. Rev. Lett. 42 1127
[14] Li M, Geng J W, Liu H, Deng Y K, Wu C Y, Peng L Y, Gong Q H and Liu Y Q 2014 Phys. Rev. Lett. 112 113002
[15] Miao X Y and Zhang C P 2014 Laser Phys. Lett. 11 115301
[16] Chen Y J and Fu L B and Liu J 2013 Phys. Rev. Lett. 111 073902
[17] Fittinghoff D N, Bolton P R, Chang B and Kulander K C 1992 Phys. Rev. Lett. 69 2642
[18] Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J and Kulander K C 1994 Phys. Rev. Lett. 73 1227
[19] Ma M Y, Wang J P, Jing W Q, Guan Z, Jiao Z H, Wang G L, Chen J H and Zhao S F 2021 Opt. Express 29 33245
[20] Tang J, Zhang G Z, He Y F, Li M, Ding X and Yao J Q 2020 Chin. Phys. Lett. 37 024201
[21] Yuan K J, Chelkowski S and Bandrauk A D 2016 Phys. Rev. A 93 053425
[22] Wang S, Cai J and Chen Y J 2017 Phys. Rev. A 96 043413
[23] Tong A H, Zhou Y M and Lu P X 2017 Opt. Quantum Electron. 49 77
[24] Djiokap J N, Hu S X, Madsen L B, Manakov N L, Meremianin A V and Starace A F 2015 Phys. Rev. Lett. 115 113004
[25] Pham V N T, Tolstikhin O I and Morishita T 2019 Phys. Rev. A 99 013428
[26] Cui H F and Miao X Y 2020 Chin. Phys. B 29 074203
[27] Cohen H D and Fano U 1966 Phys. Rev. 150 30
[28] Walter M and Briggs J 1999 J. Phys. B: At. Mol. Opt. Phys. 32 2473
[29] Zuo T, Bandrauk A D and Corkum P B 1996 Chemical Physics Letters 259 313
[30] Talebpour A, Chien C Y and Chin S L 1996 J. Phys. B: At. Mol. Opt. Phys. 29 L677
[31] Guo C, Li M, Nibarger J P and Gibson G N 1998 Phys. Rev. A 58 R4271
[32] Dewitt M J , Wells E and Jones R R 2001 Phys. Rev. Lett. 87 153001
[33] Grasbon F, Paulus G G, Chin S L, Walther H, Muth-Böhm J, Becker A and Faisal F H M 2001 Phys. Rev. A 63 041402
[34] Wei M Z, Quan W, Sun R P, Xu S P, Xiao Z L, Zhou Yu, Zhao M, Hao X L, Duan C X and Liu X J 2018 Phys. Rev. A 98 063418
[35] Kunitski M, Eicke N, Huber P et al. 2019 Nat. Commun. 10 1
[36] Guo Z N and Liu Y Q 2020 J. Phys. B: At. Mol. Opt. Phys. 53 065004
[38] Pradeep T, Niu B and Shirley D A 1993 J. Chem. Phys. 98 5269
[39] Bandrauk A D and Shen H 1993 J. Chem. Phys. 99 1185
[40] Bandrauk A D and Lu H Z 2013 J. Theor. Comput. Chem. 12 1340001
[41] Frisch M, Trucks G, Schlegel H B, et al. 2009 GAUSSIAN09 (Inc., Wallingford CT)
[42] Zhang H D, Ben S, Xu T T and Song K L 2018 Phys. Rev. A 98 013422
[43] Yuan K J, Lu H Z and Bandrauk A D 2017 J. Phys. B: At. Mol. Opt. Phys. 50 124004
[44] Pengel D, Kerbstadt S, Johannmeyer D, Englert L, Bayer T and Wollenhaupt M 2017 Phys. Rev. Lett. 118 053003
[45] Guo J, Zhang S Q, Zhang J, Zhou S P and Guan P F 2021 Laser Physics 31 065301
[1] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[2] Solving the time-dependent Schrödinger equation by combining smooth exterior complex scaling and Arnoldi propagator
Shun Wang(王顺) and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2022, 31(1): 013201.
[3] Comparative study of photoionization of atomic hydrogen by solving the one- and three-dimensional time-dependent Schrödinger equations
Shun Wang(王顺), Shahab Ullah Khan, Xiao-Qing Tian(田晓庆), Hui-Bin Sun(孙慧斌), and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2021, 30(8): 083301.
[4] Role of Bloch oscillation in high-order harmonic generation from periodic structure
Lu Liu(刘璐), Jing Zhao(赵晶), Jian-Min Yuan(袁建民), Zeng-Xiu Zhao(赵增秀). Chin. Phys. B, 2019, 28(11): 114205.
[5] Above-threshold ionization of hydrogen atom in chirped laser fields
Yuan-Yuan Ni(倪园园), Song-Feng Zhao(赵松峰), Xiao-Yong Li(李小勇), Guo-Li Wang(王国利), Xiao-Xin Zhou(周效信). Chin. Phys. B, 2018, 27(7): 073203.
[6] Control of electron localization in the dissociation of H2+ and its isotopes with a THz pulse
Jia Zheng-Mao (贾正茂), Zeng Zhi-Nan (曾志男), Li Ru-Xin (李儒新), Xu Zhi-Zhan (徐至展), Deng Yun-Pei (邓蕴沛). Chin. Phys. B, 2015, 24(1): 013204.
[7] Semi-classical explanation for the dissociation control of H2+
Jia Zheng-Mao (贾正茂), Zeng Zhi-Nan (曾志男), Li Ru-Xin (李儒新), Xu Zhi-Zhan (徐至展). Chin. Phys. B, 2014, 23(8): 083201.
[8] Two-dimensional photoelectron momentum distribution of hydrogen in intense laser field
Sun Chang-Ping(孙长平), Zhao Song-Feng(赵松峰), Chen Jian-Hong(陈建宏), and Zhou Xiao-Xin(周效信) . Chin. Phys. B, 2011, 20(11): 113201.
No Suggested Reading articles found!