CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111) |
Huan Yang(杨欢)1,†, Yixuan Gao(高艺璇)1,†, Wenhui Niu(牛雯慧)2,3,†, Xiao Chang(常霄)1, Li Huang(黄立)1,‡, Junzhi Liu(刘俊治)2,4, Yiyong Mai(麦亦勇)3, Xinliang Feng(冯新亮)2,§, Shixuan Du(杜世萱)1,5,¶, and Hong-Jun Gao(高鸿钧)1,5 |
1 Institute of Physics and University of Chinese Academy of Sciences(CAS), Beijing 100190, China; 2 Center for Advancing Electronics Dresden(cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany; 3 School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, China; 4 Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China; 5 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract The on-surface synthesis from predesigned organic precursors can yield graphene nanoribbons (GNRs) with atomically precise widths, edge terminations and dopants, which facilitate the tunning of their electronic structures. Here, we report the synthesis of novel sulfur-doped cove-edged GNRs (S-CGNRs) on Au(111) from a specifically designed precursor containing thiophene rings. Scanning tunneling microscopy and non-contact atomic force microscopy measurements elucidate the formation of S-CGNRs through subsequent polymerization and cyclodehydrogenation, which further result in crosslinked branched structures. Scanning tunneling spectroscopy results reveal the conduction band minimum of the S-CGNR locates at 1.2 eV. First-principles calculations show that the S-CGNR possesses an energy bandgap of 1.17 eV, which is evidently smaller than that of an undoped cove-edged GNR (1.7 eV), suggesting effective tuning of the bandgap by introducing sulfur atoms. Further increasing the coverage of precursors close to a monolayer results in the formation of linear-shaped S-CGNRs. The fabrication of S-CGNRs provides one more candidate in the GNR toolbox and promotes the future applications of heteroatom-doped graphene nanostructures.
|
Received: 01 April 2021
Revised: 22 April 2021
Accepted manuscript online: 27 April 2021
|
PACS:
|
73.22.Pr
|
(Electronic structure of graphene)
|
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
85.65.+h
|
(Molecular electronic devices)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51761135130, 61888102, and 21774076), the National Key Research and Development Program of China (Grant Nos. 2018YFA0305800 and 2019YFA0308500), the DFG EnhanceNano (Grant No. 391979941), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB30000000), the International Partnership Program of Chinese Academy of Sciences (Grant No. 112111KYSB20160061), and the K C Wong Education Foundation and the Program of Shanghai Academic Research Leader (Grant No. 19XD1421700). |
Corresponding Authors:
Li Huang, Xinliang Feng, Shixuan Du
E-mail: lhuang@iphy.ac.cn;xinliang.feng@tu-dresden.de;sxdu@iphy.ac.cn
|
Cite this article:
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧) Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111) 2021 Chin. Phys. B 30 077306
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Nat. Acad. Sci. USA 102 10451 [3] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 [4] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [5] Ma R S, Huan Q, Wu L M, Yan J H, Zhang Y Y, Bao L H, Liu Y Q, Du S X and Gao H J 2017 Chin. Phys. B 26 066801 [6] Guo H, Chen H, Que Y, Zheng Q, Zhang Y Y, Bao L H, Huang L, Wang Y L, Du S X and Gao H J 2019 Chin. Phys. B 28 056107 [7] Huang L, Li G, Zhang Y Y, Bao L H, Huan Q, Lin X, Wang Y L, Guo H M, Shen C M, Du S X and Gao H J 2018 Acta Phys. Sin. 67 126801 (in Chinese) [8] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803 [9] Han M Y, Özyilmaz B, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 206805 [10] Llinas J P, Fairbrother A, Borin Barin G, Shi W, Lee K, Wu S, Yong Choi B, Braganza R, Lear J, Kau N, Choi W, Chen C, Pedramrazi Z, Dumslaff T, Narita A, Feng X, Mullen K, Fischer F, Zettl A, Ruffieux P, Yablonovitch E, Crommie M, Fasel R and Bokor J 2017 Nat. Commun. 8 633 [11] Su X, Xue Z, Li G and Yu P 2018 Nano Lett. 18 5744 [12] Bronner C, Stremlau S, Gille M, Brausse F, Haase A, Hecht S and Tegeder P 2013 Angew. Chem., Int. Ed. 52 4422 [13] Chen Y C, de Oteyza D G, Pedramrazi Z, Chen C, Fischer F R and Crommie M F 2013 ACS Nano 7 6123 [14] Cai J, Pignedoli C A, Talirz L, Ruffieux P, Sode H, Liang L, Meunier V, Berger R, Li R, Feng X, Mullen K and Fasel R 2014 Nat. Nanotechnol. 9 896 [15] Kimouche A, Ervasti M M, Drost R, Halonen S, Harju A, Joensuu P M, Sainio J and Liljeroth P 2015 Nat. Commun. 6 10177 [16] Ruffieux P, Wang S, Yang B, Sanchez-Sanchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X, Mullen K and Fasel R 2016 Nature 531 489 [17] Qi C and Hu J 2018 Chin. Phys. B 27 077106 [18] Xiao Y, Ye Q, Liang J, Yan X and Zhang Y 2020 Chin. Phys. B 29 127201 [19] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mullen K and Fasel R 2010 Nature 466 470 [20] Wang X and Dai H 2010 Nat. Chem. 2 661 [21] Magda G Z, Jin X, Hagymasi I, Vancso P, Osvath Z, Nemes-Incze P, Hwang C, Biro L P and Tapaszto L 2014 Nature 514 608 [22] Kolmer M, Steiner A K, Izydorczyk I, Ko W, Engelund M, Szymonski M, Li A P and Amsharov K 2020 Science 369 571 [23] Talirz L, Ruffieux P and Fasel R 2016 Adv. Mater. 28 6222 [24] Nguyen G D, Tsai H Z, Omrani A A, Marangoni T, Wu M, Rizzo D J, Rodgers G F, Cloke R R, Durr R A, Sakai Y, Liou F, Aikawa A S, Chelikowsky J R, Louie S G, Fischer F R and Crommie M F 2017 Nat. Nanotechnol. 12 1077 [25] Chen Y C, Cao T, Chen C, Pedramrazi Z, Haberer D, de Oteyza D G, Fischer F R, Louie S G and Crommie M F 2015 Nat. Nanotechnol. 10 156 [26] Bronner C, Durr R A, Rizzo D J, Lee Y L, Marangoni T, Kalayjian A M, Rodriguez H, Zhao W, Louie S G, Fischer F R and Crommie M F 2018 ACS Nano 12 2193 [27] Liu J, Li B W, Tan Y Z, Giannakopoulos A, Sanchez-Sanchez C, Beljonne D, Ruffieux P, Fasel R, Feng X and Mullen K 2015 J. Am. Chem. Soc. 137 6097 [28] Wang S, Talirz L, Pignedoli C A, Feng X, Mullen K, Fasel R and Ruffieux P 2016 Nat. Commun. 7 11507 [29] Wang X Y, Urgel J I, Barin G B, Eimre K, Di Giovannantonio M, Milani A, Tommasini M, Pignedoli C A, Ruffieux P, Feng X, Fasel R, Mullen K and Narita A 2018 J. Am. Chem. Soc. 140 9104 [30] Gröning O, Wang S, Yao X, Pignedoli C A, Borin Barin G, Daniels C, Cupo A, Meunier V, Feng X, Narita A, Müllen K, Ruffieux P and Fasel R 2018 Nature 560 209 [31] Rizzo D J, Veber G, Cao T, Bronner C, Chen T, Zhao F, Rodriguez H, Louie S G, Crommie M F and Fischer F R 2018 Nature 560 204 [32] Lv R and Terrones M 2012 Mater. Lett. 78 209 [33] Maaß F, Utecht M, Stremlau S, Gille M, Schwarz J, Hecht S, Klamroth T and Tegeder P 2017 Phys. Rev. B 96 045434 [34] Senkovskiy B V, Usachov D Y, Fedorov A V, Marangoni T, Haberer D, Tresca C, Profeta G, Caciuc V, Tsukamoto S, Atodiresei N, Ehlen N, Chen C, Avila J, Asensio M C, Varykhalov A Y, Nefedov A, Woll C, Kim T K, Hoesch M, Fischer F R and Gruneis A 2018 ACS Nano 12 7571 [35] Zhang Y, Zhang Y, Li G, Lu J, Lin X, Du S, Berger R, Feng X, Müllen K and Gao H J 2014 Appl. Phys. Lett. 105 023101 [36] Kawai S, Saito S, Osumi S, Yamaguchi S, Foster A S, Spijker P and Meyer E 2015 Nat. Commun. 6 8098 [37] Nguyen G D, Toma F M, Cao T, Pedramrazi Z, Chen C, Rizzo D J, Joshi T, Bronner C, Chen Y C, Favaro M, Louie S G, Fischer F R and Crommie M F 2016 J. Phys. Chem. C 120 2684 [38] Zhang Y F, Zhang Y, Li G, Lu J, Que Y, Chen H, Berger R, Feng X, Müllen K, Lin X, Zhang Y Y, Du S, Pantelides S T and Gao H J 2017 Nano Res. 10 3377 [39] Cao Y, Qi J, Zhang Y F, Huang L, Zheng Q, Lin X, Cheng Z, Zhang Y Y, Feng X, Du S, Pantelides S T and Gao H J 2018 Nano Res. 11 6190 [40] Pedramrazi Z, Chen C, Zhao F, Cao T, Nguyen G D, Omrani A A, Tsai H Z, Cloke R R, Marangoni T, Rizzo D J, Joshi T, Bronner C, Choi W W, Fischer F R, Louie S G and Crommie M F 2018 Nano Lett. 18 3550 [41] Gross L, Mohn F, Moll N, Liljeroth P and Meyer G 2009 Science 325 1110 [42] Pavlicek N, Majzik Z, Collazos S, Meyer G, Perez D, Guitian E, Pena D and Gross L 2017 ACS Nano 11 10768 [43] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [44] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15 [45] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [46] Bartels L, Meyer G and Rieder K H 1997 Appl. Phys. Lett. 71 213 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|