Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 070501    DOI: 10.1088/1674-1056/27/7/070501
GENERAL Prev   Next  

Generalized Lanczos method for systematic optimization of tensor network states

Rui-Zhen Huang(黄瑞珍)1,2, Hai-Jun Liao(廖海军)1, Zhi-Yuan Liu(刘志远)2,3, Hai-Dong Xie(谢海东)1,2, Zhi-Yuan Xie(谢志远)4, Hui-Hai Zhao(赵汇海)5,6,7, Jing Chen(陈靖)1,2, Tao Xiang(向涛)1,2,8
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 Department of Physics, Renmin University of China, Beijing 100872, China;
5 Department of Applied Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
6 Institute for Solid State Physics, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581, Japan;
7 RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan;
8 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
Abstract  

We propose a generalized Lanczos method to generate the many-body basis states of quantum lattice models using tensor-network states (TNS). The ground-state wave function is represented as a linear superposition composed from a set of TNS generated by Lanczos iteration. This method improves significantly the accuracy of the tensor-network algorithm and provides an effective way to enlarge the maximal bond dimension of TNS. The ground state such obtained contains significantly more entanglement than each individual TNS, reproducing correctly the logarithmic size dependence of the entanglement entropy in a critical system. The method can be generalized to non-Hamiltonian systems and to the calculation of low-lying excited states, dynamical correlation functions, and other physical properties of strongly correlated systems.

Keywords:  tensor network state      generalized Lanczos method      renormalization group  
Received:  08 March 2018      Revised:  20 April 2018      Accepted manuscript online: 
PACS:  05.10.Cc (Renormalization group methods)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  05.30.-d (Quantum statistical mechanics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11190024 and 11474331).

Corresponding Authors:  Tao Xiang     E-mail:  txiang@iphy.ac.cn

Cite this article: 

Rui-Zhen Huang(黄瑞珍), Hai-Jun Liao(廖海军), Zhi-Yuan Liu(刘志远), Hai-Dong Xie(谢海东), Zhi-Yuan Xie(谢志远), Hui-Hai Zhao(赵汇海), Jing Chen(陈靖), Tao Xiang(向涛) Generalized Lanczos method for systematic optimization of tensor network states 2018 Chin. Phys. B 27 070501

[1] Niggemann H, Klumper A and Zittartz J 1997 Z. Phys. B 104 103
[2] Nishino T, Okunishi K, Hieida Y, Maeshima N and Akutsu Y 2000 Nucl. Phys. B 575 504
[3] Verstraete F and Cirac J I 2004 arXiv:0407066v1[str-el]
[4] Levin M and Nave C P 2007 Phys. Rev. Lett. 99 120601
[5] Vidal G 2007 Phys. Rev. Lett. 99 220405
[6] Jiang H C, Weng Z Y and Xiang T 2008 Phys. Rev. Lett. 101 090603
[7] Jordan J, Orús R, Vidal G, Verstraete F and Cirac J I 2008 Phys. Rev. Lett. 101 250602
[8] Xie Z Y, Jiang H C, Chen Q N, Weng Z Y and Xiang T 2009 Phys. Rev. Lett. 103 160601
[9] Xie Z Y, Chen J, Qin M P, Zhu J W, Yang L P and Xiang T 2012 Phys. Rev. B 86 045139
[10] Corboz P, Rice T M and Troyer M 2014 Phys. Rev. Lett. 113 046402
[11] Xie Z Y, Chen J, Yu J F, Kong X, Normand B and Xiang T 2014 Phys. Rev. X 4 011025
[12] Östlund S and Rommer S 1995 Phys. Rev. Lett. 75 3537
[13] White S R 1992 Phys. Rev. Lett. 69 2863
[14] Eisert J, Cramer M and Plenio M B 2010 Rev. Mod. Phys. 82 277
[15] Evenbly G and Vidal G 2014 Phys. Rev. Lett. 112 240502
[16] We thank Sun G Y for providing us the QMC results.
[17] Lubasch M, Cirac J I and Ba? nuls M C 2014 Phys. Rev. B. 90 064425
[18] Calabrese P and Cardy J 2009 J. Phys. A:Mathematical and Theoretical 42 504005
[19] Xie Z Y, Liao H J, Huang R Z, Xie H D, Liu Z Y, Chen J and Xiang T 2017 Phys. Rev. B 96 045128
[20] Liao H J, Xie Z Y, Chen J, Liu Z Y, Xie H D, Huang R Z, Normand B and Xiang T 2017 Phys. Rev. Lett. 118 137202
[21] Poilblanc D and Mambrini M 2017 Phys. Rev. B 96 014414
[22] Sandvik A W 2010 AIP Conference Proceedings, Vol. 1297 pp. 135-338 (AIP Publishing)
[23] Holzner A, Weichselbaum A, McCulloch I P, Schollwock U and von Delft J 2011 Phys. Rev. B 83 195115
[24] Dargel P E, Wollert A, Honecker A, McCulloch I P, Schollwock U and Pruschke T 2012 Phys. Rev. B 85 205119
[25] Nishino T 1995 J. Phys. Soc. Jpn. 64 3598
[26] Bursill R J, Xiang T and Gehring G A 1996 J. Phys.:Condensed Matter 8 L583
[27] Wang X and Xiang T 1997 Phys. Rev. B 56 5061
[28] Arnoldi W E 1951 Quarterly of App. Math. 9 17
[29] Nightingale M P, Viswanath V S and Muller G 1993 Phys. Rev. B 48 7696
[1] Real-space parallel density matrix renormalization group with adaptive boundaries
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(8): 080202.
[2] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[3] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[4] Improved hybrid parallel strategy for density matrix renormalization group method
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 070202.
[5] Effect of weak disorder in multi-Weyl semimetals
Zhen Ning(宁震), Bo Fu(付博), Qinwei Shi(石勤伟), Xiaoping Wang(王晓平). Chin. Phys. B, 2020, 29(7): 077202.
[6] Controllable precision of the projective truncation approximation for Green's functions
Peng Fan(范鹏), Ning-Hua Tong(同宁华). Chin. Phys. B, 2019, 28(4): 047102.
[7] Phase transitions of the five-state clock model on the square lattice
Yong Chen(陈勇), Zhi-Yuan Xie(谢志远), Ji-Feng Yu(余继锋). Chin. Phys. B, 2018, 27(8): 080503.
[8] Equilibrium dynamics of the sub-Ohmic spin-boson model under bias
Da-Chuan Zheng(郑大川), Ning-Hua Tong(同宁华). Chin. Phys. B, 2017, 26(6): 060501.
[9] Dynamical correlation functions of the quadratic coupling spin-Boson model
Da-Chuan Zheng(郑大川), Ning-Hua Tong(同宁华). Chin. Phys. B, 2017, 26(6): 060502.
[10] Kosterlitz-Thouless transition, spectral property and magnetic moment for a two-dot structure with level difference
Yong-Chen Xiong(熊永臣), Wang-Huai Zhou(周望怀), Jun Zhang(张俊), Nan Nan(南楠). Chin. Phys. B, 2017, 26(6): 067501.
[11] Off-site trimer superfluid on a one-dimensional optical lattice
Er-Nv Fan(范二女), Tony C Scott, Wan-Zhou Zhang(张万舟). Chin. Phys. B, 2017, 26(4): 043701.
[12] Phase transition in a two-dimensional Ising ferromagnet based on the generalized zero-temperature Glauber dynamics
Meng Qing-Kuan (孟庆宽), Feng Dong-Tai (冯东太), Gao Xu-Tuan (高绪团), Mei Yu-Xue (梅玉雪). Chin. Phys. B, 2013, 22(12): 127501.
[13] Kondo effect for electron transport through an artificial quantum dot
Sun Ke-Wei (孙科伟), Xiong Shi-Jie (熊诗杰). Chin. Phys. B, 2006, 15(4): 828-832.
No Suggested Reading articles found!