|
|
Superconductivity in electron-doped arsenene |
Xin Kong(孔鑫)1,2, Miao Gao(高淼)3, Xun-Wang Yan(闫循旺)4, Zhong-Yi Lu(卢仲毅)5, Tao Xiang(向涛)1,6 |
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Department of Microelectronics Science and Engineering, Faculty of Science, Ningbo University, Ningbo 315211, China;
4 College of Physics and Engineering, Qufu Normal University, Qufu 273165, China;
5 Department of Physics, Renmin University of China, Beijing 100872, China;
6 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China |
|
|
Abstract Based on the first-principles density functional theory electronic structure calculation, we investigate the possible phonon-mediated superconductivity in arsenene, a two-dimensional buckled arsenic atomic sheet, under electron doping. We find that the strong superconducting pairing interaction results mainly from the pz-like electrons of arsenic atoms and the A1 phonon mode around the K point, and the superconducting transition temperature can be as high as 30.8 K in the arsenene with 0.2 doped electrons per unit cell and 12%-applied biaxial tensile strain. This transition temperature is about ten times higher than that in the bulk arsenic under high pressure. It is also the highest transition temperature that is predicted for electron-doped two-dimensional elemental superconductors, including graphene, silicene, phosphorene, and borophene.
|
Received: 22 February 2018
Revised: 02 March 2018
Accepted manuscript online:
|
PACS:
|
63.20.kd
|
(Phonon-electron interactions)
|
|
74.20.Pq
|
(Electronic structure calculations)
|
|
74.72.Ek
|
(Electron-doped)
|
|
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0302901), the National Natural Science Foundation of China (Grant Nos. 11474331, 11404383, and 11474004), the Natural Science Foundation of Zhejiang Province, China (Grant No. LY17A040005), and the K. C. Wong Magna Fund in Ningbo University. |
Corresponding Authors:
Miao Gao
E-mail: gaomiao@nbu.edu.cn
|
Cite this article:
Xin Kong(孔鑫), Miao Gao(高淼), Xun-Wang Yan(闫循旺), Zhong-Yi Lu(卢仲毅), Tao Xiang(向涛) Superconductivity in electron-doped arsenene 2018 Chin. Phys. B 27 046301
|
[1] |
De Franceschi S, Kouwenhoven L, Schönenberger Ch and Wernsdorfer W 2010 Nat. Nanotech. 5 703
|
[2] |
Huefner M, May C, Kičin S, Ensslin K, Ihn T, Hilke M, Suter K, de Rooij N F and Staufer U 2009 Phys. Rev. B 79 134530
|
[3] |
Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402
|
[4] |
Ge J F, Liu Z L, Liu C H, Gao C L, Qian D, Xue Q K, Liu Y and Jia J F 2015 Nat. Mater. 14 285
|
[5] |
Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu Pang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. 105 14262
|
[6] |
Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H and Shen Z X 2014 Nature 515 245
|
[7] |
Uchoa B and Castro Neto A H 2007 Phys. Rev. Lett. 98 146801
|
[8] |
Profeta G, Calandra M and Mauri F 2012 Nat. Phys. 8 131
|
[9] |
Tiwari A P, Shin S, Hwang E, Jung S G, Park T and Lee H 2015 arXiv:1508.06360
|
[10] |
Chapman J, Su Y, Howard C A, Kundys D, Grigorenko A, Guinea F, Geim A K, Grigorieva I V and Nair R R 2016 Sci. Rep. 6 23254
|
[11] |
Si C, Liu Z, Duan W and Liu F 2013 Phys. Rev. Lett. 111 196802
|
[12] |
Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomáanek D and Ye P D 2014 ACS Nano 8 4033
|
[13] |
Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
|
[14] |
Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
|
[15] |
Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X L, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C and Guisinger N P 2015 Science 350 1513
|
[16] |
Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L and Wu K 2016 Nat. Chem. 8 563
|
[17] |
Chen L, Li H, Feng B, Ding Z, Qiu J, Cheng P, Wu K and Meng S 2013 Phys. Rev. Lett. 110 085504
|
[18] |
Nie Y F, Brahimi E, Budnick J I, Hines W A, Jain M and Wells B O 2009 Appl. Phys. Lett. 94 242505
|
[19] |
Ding F, Ji H, Chen Y, Herklotz A, Dörr K, Mei Y, Rastelli A and Schmidt O G 2010 Nano Lett. 10 3453
|
[20] |
Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T and Bolotin K I 2013 Nano Lett. 13 3626
|
[21] |
Wan W, Ge Y, Yang F and Yao Y 2013 Europhys. Lett. 104 36001
|
[22] |
Shao D F, Lu W J, Lv H Y and Sun Y P 2014 Europhys. Lett. 108 67004
|
[23] |
Ge Y, Wan W, Yang F and Yao Y 2015 New J. Phys. 17 035008
|
[24] |
Penev E S, Kutana A and Yakobson B I 2016 Nano Lett. 16 2522
|
[25] |
Gao M, Li Q Z, Yan X W and Wang J 2017 Phys. Rev. B 95 024505
|
[26] |
Cheng C, Sun J T, Liu H, Fu H X, J. Zhang, Chen X R and Meng S 2017 2D Mater. 4 025032
|
[27] |
Zhang S, Yan Z, Li Y, Chen Z and Zeng H 2015 Angew. Chem. Int. Ed. 54 3112
|
[28] |
Kamal C and Ezawa M 2015 Phys. Rev. B 91 085423
|
[29] |
Pizzi G, Gibertini M, Dib E, Marzari N, Iannaccone G and Fiori G 2016 Nat. Communs. 7 12585
|
[30] |
Zhang H, Ma Y and Chen Z 2015 Nanoscale 7 19152
|
[31] |
Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.:Condens. Matter 21 395502
|
[32] |
Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
|
[33] |
Giustino F, Cohen M L and Louie S G 2007 Phys. Rev. B 76 165108
|
[34] |
Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
|
[35] |
Baroni S, De Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
|
[36] |
Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
|
[37] |
Souza I, Marzari N and Vanderbilt D 2001 Phys. Rev. B 65 035109
|
[38] |
Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
|
[39] |
Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun. 185 2309
|
[40] |
Noffsinger J, Giustino F, Malone B D, Park C H, Louie S G and Cohen M L 2010 Comput. Phys. Commun. 181 2140
|
[41] |
Poncáe S, Margine E R, Verdi C and Giustino F 2016 Comput. Phys. Commun. 209 116
|
[42] |
Allen P B 1972 Phys. Rev. B 6 2577
|
[43] |
Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
|
[44] |
Cahangirov S, Topsakal M, Aktürk E, Şahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
|
[45] |
Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T and Ciraci S 2009 Phys. Rev. B 80 155453
|
[46] |
Tsai H S, Wang S W, Hsiao C H, Chen C W, Ouyang H, Chueh Y L, Kuo H C and Liang J H 2016 Chem. Mater. 28 425
|
[47] |
Madelung O 2004 Semiconductors:Data Handbook, 3rd edn. (New York:Springer-Verlag) pp. 405-411, ISBN 3540404880
|
[48] |
Yuan H, Shimotani H, Tsukazaki A, Ohtomo A, Kawasaki M and Iwasa Y 2009 Adv. Funct. Mater. 19 1046
|
[49] |
Fujimoto T and Awaga K 2013 Phys. Chem. Chem. Phys. 15 8983
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|