CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
The influence of surface effects on Frederiks transition in nematic liquid crystal doped with ferroelectric nanoparticles |
Erfan Kadivar1, Mojtaba Farrokhbin2 |
1. Department of Physics, Shiraz University of Technology, Shiraz 71555-313, Iran; 2. Department of Physics, Faculty of Sciences, Yazd University, Yazd 89195-741, Iran |
|
|
Abstract Motivated by our recent work, in this work, we present the numerical study of the anchoring effect on the Frederiks threshold field in a nematic liquid crystal doped with ferroelectric colloidal nanoparticles. Assuming weak anchoring conditions, we employ the relaxation method and Maxwell construction to numerically solve the Euler-Lagrangian differential equation for the total free energy together the Rapini-Papoular surface energy to take into account anchoring of nematic liquid crystal molecules at the substrates. In this study, we focus our attention on obtaining the phase diagrams of Frederiks transition for different values of anchoring strength which have been not computed in our previous work. In this way, the effect of nanoparticle radius, nanoparticle volume fraction, nanoparticle polarization, and cell thickness on the Frederiks transition for different values of anchoring conditions are summarized in the phase diagrams. The numerical results show that by increasing the nanoparticles size and nanoparticle volume fraction in the ferronematic system, the Frederiks threshold field is strongly reduced.
|
Received: 11 November 2017
Revised: 03 January 2018
Accepted manuscript online:
|
PACS:
|
68.35.Rh
|
(Phase transitions and critical phenomena)
|
|
77.84.Nh
|
(Liquids, emulsions, and suspensions; liquid crystals)
|
|
64.70.M-
|
(Transitions in liquid crystals)
|
|
05.70.Np
|
(Interface and surface thermodynamics)
|
|
Corresponding Authors:
Erfan Kadivar, Mojtaba Farrokhbin
E-mail: erfan.kadivar@sutech.ac.ir;m.farrokhbin@gmail.com
|
Cite this article:
Erfan Kadivar, Mojtaba Farrokhbin The influence of surface effects on Frederiks transition in nematic liquid crystal doped with ferroelectric nanoparticles 2018 Chin. Phys. B 27 046801
|
[1] |
Efron U 1995 Spatial Light Modulator Technology:Materials, Devices, and Applications (Dekker)
|
[2] |
Bortolozzo U, Clerc M G, Falcon C, Residori S and Rojas R 2006 Phys. Rev. Lett. 96 214501
|
[3] |
Residori S, Bortolozzo U, Huignard J P 2008 Phys. Rev. Lett. 100 203603
|
[4] |
MÍnguez-Vega G, Supradeepa V R, Mendoza-Yero O and Weiner A M 2010 Opt. Lett. 35 2406
|
[5] |
Alberucci A, Piccardi A, Bortolozzo U, Residori S and Assanto G 2010 Opt. Lett. 35 390
|
[6] |
Maurer C, Jesacher A, Bernet S and Ritsch-Marte M 2011 Laser Photon. Rev. 5 81
|
[7] |
Kaczmarek M and Dyadyusha A 2004 J. Appl. Phys. 96 2616
|
[8] |
Cook G, Glushchenko A V, Reshetnyak V Yu, Beckel, E R, Saleh M A and Evans D R 2008 IEEE/LEOS Winter Topical Meeting Series, January 14-16, 2008, Sorrento, Italy, p. 129
|
[9] |
Cook G, Glushchenko A V, Reshetnyak V, Griffith A T, Saleh M A and Evans D R 2008 Opt. Express 16 4015
|
[10] |
Khoo I C 2007 Liquid crystals, 2nd edn. (New Jersey:John Wiley and Sons)
|
[11] |
Beeckman J, Neyts K and Vanbrabant P J M 2011 Opt. Eng. 50 081202
|
[12] |
Bahadur B 1990 Liquid Crystals Applications and Uses, Vol. 3(Toronto:World Scientific)
|
[13] |
Brochard F and de Gennes P G 1970 J. Phys. 31 691
|
[14] |
Burylov S V and Raikher Y L 1994 Phys. Rev. E 50 358
|
[15] |
Raikher Yu L, Burylov S V and Zakhlevnykh A N 1987 J. Magn. Magn. Mater. 65 173
|
[16] |
Raikher Y L and Stepanov V I 1999 J. Magn. Magn. Mater. 201 182
|
[17] |
Burylov S V and Raikher Y L 1995 Mol. Cryst. Liq. Cryst. 258 123
|
[18] |
Podoliak N, Buchnev O, DÁlessandro G, Kaczmarek M, Reznikov Y and Sluckin T J 2011 Soft Matter 7 4742
|
[19] |
Dierking I, Scalia G and Morales P 2005 J. Appl. Phys. 97 44309
|
[20] |
Al-Zangana S, Turner M and Dierking I 2017 J. Appl. Phys. 121 085105
|
[21] |
Stark H 2001 Phys. Rep. 351 387
|
[22] |
Smalyukh I I, Lavrentovich O D, Kuzmin A N, Kachynski A V and Prasad P N 2005 Phys. Rev. Lett. 95 157801
|
[23] |
Yada M, Yamamoto J and Yokoyama H 2004 Phys. Rev. Lett. 92 185501
|
[24] |
Poulin P, Stark H, Lubensky T C and Weitz D A 1997 Science 275 1770
|
[25] |
Gu Y and Abbott N L 2000 Phys. Rev. Lett. 85 4719
|
[26] |
Musevic I, Skarabot M, Tkalec U, Ravnik M and Zumer S 2006 Science 313 954
|
[27] |
Hakobyan M R, Alaverdyan R B, Hakobyan R S and Chilingaryan Yu S 2014 Armen. J. Phys. 7 11
|
[28] |
Reznikov Y, Buchnev O, Tereshchenko O, Reshetnyak V, Glushchenko A and West J 2003 Appl. Phys. Lett. 82 1917
|
[29] |
Ouskova E, Buchnev O, Reshetnyak V, Reznikov Y and Kresse H 2003 Liq. Cryst. 30 1235
|
[30] |
Bing G Y, Hai C Y, Ying X, Chun Q S and Zhan-Guo W 2011 Chin. Phys. Lett. 28 096101
|
[31] |
Lopatina L M and Selinger J V 2009 Phys. Rev. Lett. 102 197802
|
[32] |
Lopatina L M and Selinger J V 2011 Phys. Rev. E. 84 041703
|
[33] |
Mukherjee P K 2017 J. Mol. Liq. 225 462
|
[34] |
Mukherjee P K 2016 Europhys. Lett. 114 56002
|
[35] |
Uchida T and Seki H 1992 In Liquid crystals:Applications and Uses, ed. Bahadur B, Vol. 3(Singapore:World Scientific) p. 63
|
[36] |
Ge J J, Li C Y, Xue G, Mann I K, et al. 2001 J. Am. Chem. Soc. 123 5768
|
[37] |
Toney M F, Russell T P, Logan J A, Kikuchi H, Sands J M and Kumar S K 1995 Nature 374 709
|
[38] |
Yaroshchuk O and Reznikov Y 2012 J. Mater. Chem. 22 286
|
[39] |
Rong-Hua G 2012 Acta Phys. Sin. 61 156102
|
[40] |
Kadivar E, Bahr C and Stark H 2007 Phys. Rev. E 75 061711
|
[41] |
Ying Z M, Merlitza H and Xua W C 2015 Chin. Phys. B 24 026101
|
[42] |
Evans S D, Allinson H, Boden N, Flynn T M and Henderson J R 1997 J. Phys. Chem. B 101 2143
|
[43] |
Ramdane O O, Auroy P, Forget S, Raspaud E, Martinot-Lagarde P and Dozov I 2000 Phys. Rev. Lett. 84 3871
|
[44] |
Ruetschi M, Grutter J, Funfschilling J and Gunterodt H J 1994 Science 265 512
|
[45] |
Farrokhbin M and Kadivar E 2016 Physica A 462 725
|
[46] |
Rapini A and Papoular M 1969 J. Phys. (Paris) 30 54
|
[47] |
Kadivar E 2009 Phys. Rev. E 80 011701
|
[48] |
Shelestiuk S M, Reshetnyak V Y and Sluckin T J 2011 Phys. Rev. E 83 041705
|
[49] |
Basu R and Iannacchione G S 2009 Appl. Phys. Lett. 95 173113
|
[50] |
Blinov L M and Chigrinov V G 1994 Electrooptic Effects in Liquid Crystal Materials (New York:Springer)
|
[51] |
Zadorozhnii V I, Sluckin T J, Reshetnyak V Y and Thomas K S 2008 SIAM J. Appl. Math. 68 1688
|
[52] |
Napoli G 2006 J. Phys. A:Math. Gen. 39 11
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|