Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 026101    DOI: 10.1088/1674-1056/27/2/026101
Special Issue: Virtual Special Topic — Magnetism and Magnetic Materials
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural, magnetic properties, and electronic structure of hexagonal FeCoSn compound

Yong Li(李勇)1,2, Xue-Fang Dai(代学芳)1, Guo-Dong Liu(刘国栋)1, Zhi-Yang Wei(魏志阳)2, En-Ke Liu(刘恩克)2, Xiao-Lei Han(韩小磊)3, Zhi-Wei Du(杜志伟)3, Xue-Kui Xi(郗学奎)2, Wen-Hong Wang(王文洪)2, Guang-Heng Wu(吴光恒)2
1. School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, China;
2. State Key Laboratory for Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3. National Analysis and Testing Center for Nonferrous Metals & Electronic Materials, Beijing General Research Institute for Non-ferrous Metals, Beijing 100088, China
Abstract  

The structural, magnetic properties, and electronic structures of hexagonal FeCoSn compounds with as-annealed bulk and ribbon states were investigated by x-ray powder diffraction (XRD), differential scanning calorimetry (DSC), transmission electron microscope (TEM), scanning electron microscope (SEM), magnetic measurements, and first-principles calculations. Results indicate that both states of FeCoSn show an Ni2In-type hexagonal structure with a small amount of FeCo-rich secondary phase. The Curie temperatures are located at 257 K and 229 K, respectively. The corresponding magnetizations are 2.57 μB/f.u. and 2.94 μB/f.u. at 5 K with a field of 50 kOe (1 Oe=79.5775 A·m-1). The orbital hybridizations between 3d elements are analyzed from the distribution of density of states (DOS), showing that Fe atoms carry the main magnetic moments and determine the electronic structure around Fermi level. A peak of DOS at Fermi level accounts for the presence of the FeCo-rich secondary phase. The Ni2In-type hexagonal FeCoSn compound can be used during the isostructural alloying for tuning phase transitions.

Keywords:  FeCoSn      hexagonal structure      first-principles calculations  
Received:  27 November 2017      Revised:  11 December 2017      Accepted manuscript online: 
PACS:  61.05.cp (X-ray diffraction)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  75.20.En (Metals and alloys)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51431009 and 51271038), the Joint NSFC-ISF Research Program, Jointly Funded by the National Natural Science Foundation of China and the Israel Science Foundation (Grant No. 51561145003).

Corresponding Authors:  Xue-Fang Dai     E-mail:  xuefangdai@126.com
About author:  61.05.cp; 71.15.Mb; 75.20.En

Cite this article: 

Yong Li(李勇), Xue-Fang Dai(代学芳), Guo-Dong Liu(刘国栋), Zhi-Yang Wei(魏志阳), En-Ke Liu(刘恩克), Xiao-Lei Han(韩小磊), Zhi-Wei Du(杜志伟), Xue-Kui Xi(郗学奎), Wen-Hong Wang(王文洪), Guang-Heng Wu(吴光恒) Structural, magnetic properties, and electronic structure of hexagonal FeCoSn compound 2018 Chin. Phys. B 27 026101

[1] Castelliz L 1953 Monatsh. Chem. 84 765
[2] Szytula A, Pędziwiatr A T, Tomkowicz Z and Bażela W 1981 J. Magn. Magn. Mater. 25 176
[3] Johnson V 1975 Inorg. Chem. 14 1117
[4] Bażela W, Szytula A, Todorović J, Tomkowicz Z and Zięba A 1976 Phys. Status Solidi A 38 721
[5] Szytula A, Tomkowicz Z, Bażela W, Todorović J and Zięba A 1977 Physica B & C 93 393
[6] Fjellvlg H and Andresen A F 1985 J. Magn. Magn. Mater. 50 291
[7] Nizioo S, Bombik A, Bażela W, Szytula A and Fruchart D 1982 J. Magn. Magn. Mater. 27 281
[8] Sandeman K G, Daou R, Ozcan S, Durrell J H, Mathur N D and Fray D J 2006 Phys. Rev. B 74 224436
[9] Bażela W, Szytula A, Todorović J and Zięba A 1981 Phys. Status Solidi A 64 367
[10] Zhu W, Feng L, Chen J L, Wang W H, Wu G H, Liu H Y, Meng F B, Luo H Z and Li Y X 2010 Europhys. Lett. 91 17003
[11] Liu E K, Wang W H, Feng L, Zhu W, Li G J, Chen J L, Zhang H W, Wu G H, C B, Xu H B and d Boer F 2012 Nat. Commun. 3 873
[12] Liu E K, Zhang H G, Xu G Z, Zhang X M, Ma R S, Wang W H, Chen J L, Zhang H W, Wu G H, Feng L and Zhang X X 2013 Appl. Phys. Lett. 102 122405
[13] Wei Z Y, Liu E K, Li Y, Xu G Z, Zhang X M, Liu G D, Xi X K, Zhang H W, Wang W H, Wu G H and Zhang X X 2015 Adv. Electron Mater. 1 1500076
[14] Li Y, Wei Z Y, Zhang H G, Liu E K, Luo H Z, Liu G D, Xi X K, Wang S G, Wang W H, Yue M, Wu G H and Zhang X X 2016 APL Mater. 4 071101
[15] Koyama K, Sakai M, Kanomata T and Watanabe K 2004 Jpn. J. Appl. Phys. Part 1 43 8036
[16] Barcza A, Gercsi Z, Knight K S and Sandeman K G 2010 Phys. Rev. Lett. 104 247202
[17] Li G J, Liu E K, Zhang H G, Zhang Y J, Chen J L, Wang W H, Zhang H W, Wu G H and Yu S Y 2013 J. Magn. Magn. Mater. 332 146
[18] Vaez A 2013 J. Supercond. Nov. Magn. 26 1339
[19] Zhang C L, Han Z D, Qian B, Shi H F, Zhu C, Chen J and Wang T Z 2013 J. Appl. Phys. 114 153907
[20] Zhang C L, Wang D H, Han Z D, Qian B, Shi H F, Zhu C, Chen J and Wang T Z 2013 Appl. Phys. Lett. 103 132411
[21] Ma S C, Hou D, Yang F, Huang Y L, Song G, Zhong Z C, Wang D H and Du Y W 2014 Appl. Phys. Lett. 104 202412
[22] Zeng J X, Wang Z L, Nie Z H and Wang Y D 2014 Intermetallics 52 101
[23] Chen J H, Wei Z Y, Liu E K, Qi X, Wang W H and Wu G H 2015 J. Magn. Magn. Mater. 387 159
[24] Ma S C, Su Y, Yang M, Yang F, Huang Y L, Liu K, Zhang L and Zhong Z C 2015 J. Alloys Compd. 629 322
[25] Samanta T, Lepkowski D L, Saleheen A U, Shankar A, Prestigiacomo J, Dubenko I, Quetz A, Oswald I W H, McCandless G T, Chan J Y, Adams P W, Young D P, Ali N and Stadler S 2015 J. Appl. Phys. 117 123911
[26] Zhang C L, Shi H F, Ye E J, Nie Y G, Han Z D and Wang D H 2015 J. Alloys Compd. 639 36
[27] Liu J, Gong Y Y, Xu G Z, Peng G, Shah I A, Hassan N Ul and Xu F 2016 Sci. Rep. 6 23386
[28] Ozono K, Mitsui Y, Umetsu R Y, Hiroi M, Takahashi K and Koyama K 2016 AIP Conf. Proc. 1763 020003
[29] Ren Q Y, Hutchison W D, Wang J L, Studer A J, Md Din M F, Muñoz Pérez S, Cadogan J M and Campbell S J 2016 J. Phys. D:Appl. Phys. 49 175003
[30] Kasimov D, Liu J, Gong Y Y, Xu G Z, Xu F and Lu G 2018 J. Alloys Compd. 733 15
[31] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[32] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[33] Kanomata T and Goto T 1989 Phys. Status Solidi A 111 K1
[34] Bażela W, Szytula A and Zajǎc W 1981 Solid State Commun. 38 875
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[9] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!