Special Issue:
Virtual Special Topic — Magnetism and Magnetic Materials
|
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Structural, magnetic properties, and electronic structure of hexagonal FeCoSn compound |
Yong Li(李勇)1,2, Xue-Fang Dai(代学芳)1, Guo-Dong Liu(刘国栋)1, Zhi-Yang Wei(魏志阳)2, En-Ke Liu(刘恩克)2, Xiao-Lei Han(韩小磊)3, Zhi-Wei Du(杜志伟)3, Xue-Kui Xi(郗学奎)2, Wen-Hong Wang(王文洪)2, Guang-Heng Wu(吴光恒)2 |
1. School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, China;
2. State Key Laboratory for Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3. National Analysis and Testing Center for Nonferrous Metals & Electronic Materials, Beijing General Research Institute for Non-ferrous Metals, Beijing 100088, China |
|
|
Abstract The structural, magnetic properties, and electronic structures of hexagonal FeCoSn compounds with as-annealed bulk and ribbon states were investigated by x-ray powder diffraction (XRD), differential scanning calorimetry (DSC), transmission electron microscope (TEM), scanning electron microscope (SEM), magnetic measurements, and first-principles calculations. Results indicate that both states of FeCoSn show an Ni2In-type hexagonal structure with a small amount of FeCo-rich secondary phase. The Curie temperatures are located at 257 K and 229 K, respectively. The corresponding magnetizations are 2.57 μB/f.u. and 2.94 μB/f.u. at 5 K with a field of 50 kOe (1 Oe=79.5775 A·m-1). The orbital hybridizations between 3d elements are analyzed from the distribution of density of states (DOS), showing that Fe atoms carry the main magnetic moments and determine the electronic structure around Fermi level. A peak of DOS at Fermi level accounts for the presence of the FeCo-rich secondary phase. The Ni2In-type hexagonal FeCoSn compound can be used during the isostructural alloying for tuning phase transitions.
|
Received: 27 November 2017
Revised: 11 December 2017
Accepted manuscript online:
|
PACS:
|
61.05.cp
|
(X-ray diffraction)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
75.20.En
|
(Metals and alloys)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51431009 and 51271038), the Joint NSFC-ISF Research Program, Jointly Funded by the National Natural Science Foundation of China and the Israel Science Foundation (Grant No. 51561145003). |
Corresponding Authors:
Xue-Fang Dai
E-mail: xuefangdai@126.com
|
About author: 61.05.cp; 71.15.Mb; 75.20.En |
Cite this article:
Yong Li(李勇), Xue-Fang Dai(代学芳), Guo-Dong Liu(刘国栋), Zhi-Yang Wei(魏志阳), En-Ke Liu(刘恩克), Xiao-Lei Han(韩小磊), Zhi-Wei Du(杜志伟), Xue-Kui Xi(郗学奎), Wen-Hong Wang(王文洪), Guang-Heng Wu(吴光恒) Structural, magnetic properties, and electronic structure of hexagonal FeCoSn compound 2018 Chin. Phys. B 27 026101
|
[1] |
Castelliz L 1953 Monatsh. Chem. 84 765
|
[2] |
Szytula A, Pędziwiatr A T, Tomkowicz Z and Bażela W 1981 J. Magn. Magn. Mater. 25 176
|
[3] |
Johnson V 1975 Inorg. Chem. 14 1117
|
[4] |
Bażela W, Szytula A, Todorović J, Tomkowicz Z and Zięba A 1976 Phys. Status Solidi A 38 721
|
[5] |
Szytula A, Tomkowicz Z, Bażela W, Todorović J and Zięba A 1977 Physica B & C 93 393
|
[6] |
Fjellvlg H and Andresen A F 1985 J. Magn. Magn. Mater. 50 291
|
[7] |
Nizioo S, Bombik A, Bażela W, Szytula A and Fruchart D 1982 J. Magn. Magn. Mater. 27 281
|
[8] |
Sandeman K G, Daou R, Ozcan S, Durrell J H, Mathur N D and Fray D J 2006 Phys. Rev. B 74 224436
|
[9] |
Bażela W, Szytula A, Todorović J and Zięba A 1981 Phys. Status Solidi A 64 367
|
[10] |
Zhu W, Feng L, Chen J L, Wang W H, Wu G H, Liu H Y, Meng F B, Luo H Z and Li Y X 2010 Europhys. Lett. 91 17003
|
[11] |
Liu E K, Wang W H, Feng L, Zhu W, Li G J, Chen J L, Zhang H W, Wu G H, C B, Xu H B and d Boer F 2012 Nat. Commun. 3 873
|
[12] |
Liu E K, Zhang H G, Xu G Z, Zhang X M, Ma R S, Wang W H, Chen J L, Zhang H W, Wu G H, Feng L and Zhang X X 2013 Appl. Phys. Lett. 102 122405
|
[13] |
Wei Z Y, Liu E K, Li Y, Xu G Z, Zhang X M, Liu G D, Xi X K, Zhang H W, Wang W H, Wu G H and Zhang X X 2015 Adv. Electron Mater. 1 1500076
|
[14] |
Li Y, Wei Z Y, Zhang H G, Liu E K, Luo H Z, Liu G D, Xi X K, Wang S G, Wang W H, Yue M, Wu G H and Zhang X X 2016 APL Mater. 4 071101
|
[15] |
Koyama K, Sakai M, Kanomata T and Watanabe K 2004 Jpn. J. Appl. Phys. Part 1 43 8036
|
[16] |
Barcza A, Gercsi Z, Knight K S and Sandeman K G 2010 Phys. Rev. Lett. 104 247202
|
[17] |
Li G J, Liu E K, Zhang H G, Zhang Y J, Chen J L, Wang W H, Zhang H W, Wu G H and Yu S Y 2013 J. Magn. Magn. Mater. 332 146
|
[18] |
Vaez A 2013 J. Supercond. Nov. Magn. 26 1339
|
[19] |
Zhang C L, Han Z D, Qian B, Shi H F, Zhu C, Chen J and Wang T Z 2013 J. Appl. Phys. 114 153907
|
[20] |
Zhang C L, Wang D H, Han Z D, Qian B, Shi H F, Zhu C, Chen J and Wang T Z 2013 Appl. Phys. Lett. 103 132411
|
[21] |
Ma S C, Hou D, Yang F, Huang Y L, Song G, Zhong Z C, Wang D H and Du Y W 2014 Appl. Phys. Lett. 104 202412
|
[22] |
Zeng J X, Wang Z L, Nie Z H and Wang Y D 2014 Intermetallics 52 101
|
[23] |
Chen J H, Wei Z Y, Liu E K, Qi X, Wang W H and Wu G H 2015 J. Magn. Magn. Mater. 387 159
|
[24] |
Ma S C, Su Y, Yang M, Yang F, Huang Y L, Liu K, Zhang L and Zhong Z C 2015 J. Alloys Compd. 629 322
|
[25] |
Samanta T, Lepkowski D L, Saleheen A U, Shankar A, Prestigiacomo J, Dubenko I, Quetz A, Oswald I W H, McCandless G T, Chan J Y, Adams P W, Young D P, Ali N and Stadler S 2015 J. Appl. Phys. 117 123911
|
[26] |
Zhang C L, Shi H F, Ye E J, Nie Y G, Han Z D and Wang D H 2015 J. Alloys Compd. 639 36
|
[27] |
Liu J, Gong Y Y, Xu G Z, Peng G, Shah I A, Hassan N Ul and Xu F 2016 Sci. Rep. 6 23386
|
[28] |
Ozono K, Mitsui Y, Umetsu R Y, Hiroi M, Takahashi K and Koyama K 2016 AIP Conf. Proc. 1763 020003
|
[29] |
Ren Q Y, Hutchison W D, Wang J L, Studer A J, Md Din M F, Muñoz Pérez S, Cadogan J M and Campbell S J 2016 J. Phys. D:Appl. Phys. 49 175003
|
[30] |
Kasimov D, Liu J, Gong Y Y, Xu G Z, Xu F and Lu G 2018 J. Alloys Compd. 733 15
|
[31] |
Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
|
[32] |
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
|
[33] |
Kanomata T and Goto T 1989 Phys. Status Solidi A 111 K1
|
[34] |
Bażela W, Szytula A and Zajǎc W 1981 Solid State Commun. 38 875
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|