INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
High capacity sodium-rich layered oxide cathode for sodium-ion batteries |
Gen-Cai Guo(郭根材), Changhao Wang(王长昊), Bang-Ming Ming(明帮铭), Si-Wei Luo(罗斯玮), Heng Su(苏恒), Bo-Ya Wang(王博亚), Ming Zhang(张铭), Hai-Jun Yu(尉海军), Ru-Zhi Wang(王如志) |
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China |
|
|
Abstract Sodium-ion batteries have attracted significant recent attention currently considering the limited available lithium resource. However, the energy density of sodium-ion batteries is still insufficient compared to lithium-ion batteries, mainly because of the unavailability of high-energy cathode materials. In this work, a novel sodium-rich layered oxide material (Na2MnO3) is reported with a dynamical stability similar to that of the Li2MnO3 structure and a high capacity of 269.69 mA·h·g1, based on first-principles calculations. Sodium ion de-intercalation and anionic reaction processes are systematically investigated, in association with sodium ions migration phenomenon and structure stability during cycling of NaxMnO3 (1 ≤ x ≤ 2). In addition, the charge compensation during the initial charging process is mainly contributed by oxygen, where the small differences of the energy barriers of the paths 2c→4h, 4h→2c, 4h→4h, 2c→2b, and 4h→2b indicate the reversible sodium ion occupancy in transitional metal and sodium layers. Moreover, the slow decrease of the elastic constants is a clear indication of the high cycle stability. These results provide a framework to exploit the potential of sodium-rich layered oxide, which may facilitate the development of high-performance electrode materials for sodium-ion batteries.
|
Received: 29 July 2018
Revised: 04 September 2018
Accepted manuscript online:
|
PACS:
|
88.80.ff
|
(Batteries)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.15.Nc
|
(Total energy and cohesive energy calculations)
|
|
71.20.Dg
|
(Alkali and alkaline earth metals)
|
|
Fund: Project suppoted by the National Natural Science Foundation of China (Grant Nos. 11774017, 51761135129, and 51472010) and Beijing Municipal High Level Innovative Team Building Program, China (Grant No. IDHT20170502). |
Corresponding Authors:
Hai-Jun Yu, Hai-Jun Yu
E-mail: hj-yu@bjut.edu.cn;wrz@bjut.edu.cn
|
Cite this article:
Gen-Cai Guo(郭根材), Changhao Wang(王长昊), Bang-Ming Ming(明帮铭), Si-Wei Luo(罗斯玮), Heng Su(苏恒), Bo-Ya Wang(王博亚), Ming Zhang(张铭), Hai-Jun Yu(尉海军), Ru-Zhi Wang(王如志) High capacity sodium-rich layered oxide cathode for sodium-ion batteries 2018 Chin. Phys. B 27 118801
|
[1] |
Idota Y, Kubota T, Matsufuji A, Maekawa Y and Miyasaka T 1997 Science 276 1395
|
[2] |
Yoo E, Kim J, Hosono E, Zhou H S, Kudo T and Honma I 2008 Nano Lett. 8 2277
|
[3] |
Oyama N, Tatsuma T, Sato T and Sotomura T 1995 Nature 373 598
|
[4] |
Ji L, Rao M, Aloni S, Wang L, Cairns E J and Zhang Y 2011 Energy Environ. Sci. 4 5053
|
[5] |
Wang Y and Cao G 2008 Adv. Mater. 20 2251
|
[6] |
Hannan M, Lipu M, Hussain A and Mohamed A 2017 Renew. Sust. Energ. Rev. 78 834
|
[7] |
Horeh N B, Mousavi S and Shojaosadati S 2016 J. Power Sources 320 257
|
[8] |
Ling S G, Guo J, Xiao R J and Chen L Q 2016 Chin. Phys. B 25 018208
|
[9] |
Slater M D, Kim D, Lee E and Johnson C S 2013 Adv. Funct. Mater. 23 947
|
[10] |
Hao H, Liu Z, Zhao F, Geng Y and Sarkis J 2017 Resour. Policy 51 100
|
[11] |
Palomares V, Serras P, Villaluenga I, Hueso K B, Carretero-González J and Rojo T 2012 Energy Environ. Sci. 5 5884
|
[12] |
Ellis B L and Nazar L F 2012 Curr. Opin. Solid St. M. 16 168
|
[13] |
Pan H, Hu Y S and Chen L 2013 Energy Environ. Sci. 6 2338
|
[14] |
Wessells C D, Peddada S V, Huggins R A and Cui Y 2011 Nano Lett. 11 5421
|
[15] |
Zheng Y, Zhou T, Zhang C, Mao J, Liu H and Guo Z 2016 Angew. Chem. Int. Ed. 55 3408
|
[16] |
Xie F, Zhang L, Su D, Jaroniec M and Qiao S Z 2017 Adv. Mater. 29 1700989
|
[17] |
Kim S W, Seo D H, Ma X, Ceder G and Kang K 2012 Adv. Energy Mater. 2 710
|
[18] |
Berthelot R, Carlier D and Delmas C 2011 Nat. Mater. 10 74
|
[19] |
Assadi M and KatayamaYoshida H 2017 Phys. Chem. Chem. Phys. 19 23425
|
[20] |
Cao Y, Xiao L, Wang W, Choi D, Nie Z, Yu J, Saraf L V, Yang Z and Liu J 2011 Adv. Mater. 23 3155
|
[21] |
Li Y, Feng X, Cui S, Shi Q, Mi L and Chen W 2016 Cryst. Eng. Comm. 18 3136
|
[22] |
Ding J J, Zhou Y N, Sun Q and Fu Z W 2012 Electrochem. Commun. 22 85
|
[23] |
Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y and Komaba S 2012 Nat. Mater. 11 512
|
[24] |
Kee Y, Dimov N, Champet S, Gregory D H and Okada S 2016 Ionics 22 2245
|
[25] |
Wang P F, You Y, Yin Y X and Guo Y G 2016 J. Mater. Chem. A 4 17660
|
[26] |
Yu H, Guo S, Zhu Y, Ishida M and Zhou H 2014 Chem. Commun. 50 457
|
[27] |
Chen H, Hao Q, Zivkovic O, Hautier G, Du L S, Tang Y, Hu Y Y, Ma X, Grey C P and Ceder G 2013 Chem. Mater. 25 2777
|
[28] |
Kim D, Lee E, Slater M, Lu W, Rood S and Johnson C S 2012 Electrochem. Commun. 18 66
|
[29] |
Mu L Q, Hu Y S and Chen L Q 2015 Chin. Phys. B 24 038202
|
[30] |
Li F, Zhu Y E, Sheng J, Yang L, Zhang Y and Zhou Z 2017 J. Mater. Chem. A 5 25276
|
[31] |
Yabuuchi N, Takeuchi M, Komaba S, Ichikawa S, Ozaki T and Inamasu T 2016 Chem. Commun. 52 2051
|
[32] |
Freire M, Kosova N, Jordy C, Chateigner D, Lebedev O, Maignan A and Pralong V 2016 Nat. Mater. 15 173
|
[33] |
McCalla E, Sougrati M T, Rousse G, Berg E J, Abakumov A, Recham N, Ramesha K, Sathiya M, Dominko R and Van Tendeloo G 2015 J. Am. Chem. Soc. 137 4804
|
[34] |
McCalla E, Abakumov A M, Saubanére M, Foix D, Berg E J, Rousse G, Doublet M L, Gonbeau D, Novák P and Van Tendeloo G 2015 Science 350 1516
|
[35] |
Yu H J, Ishikawa R, So Y G, Shibata N, Kudo T, Zhou H S and Ikuhara Y 2013 Angew. Chem. Int. Ed. 52 5969
|
[36] |
Yu H J and Zhou H S 2013 J. Phys. Chem. Lett. 4 1268
|
[37] |
Johnson C, Kim J, Lefief C, Li N, Vaughey J and Thackeray M 2004 Electrochem. Commun. 6 1085
|
[38] |
Zuo Y, Li B, Jiang N, Chu W, Zhang H, Zou R and Xia D 2018 Adv. Mater. 30 1707255
|
[39] |
Xiao R, Li H and Chen L 2012 Chem. Mater. 24 4242
|
[40] |
Li B, Yan H, Zuo Y and Xia D 2017 Chem. Mater. 29 2811
|
[41] |
Zheng L, Wang H, Luo M, Wang G, Wang Z and Ouyang C 2018 Solid State Ionics 320 210
|
[42] |
Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
|
[43] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[44] |
Liechtenstein A, Anisimov V and Zaanen J 1995 Phys. Rev. B 52 R5467
|
[45] |
Togo A and Tanaka I 2015 Scr. Mater. 108 1
|
[46] |
Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
|
[47] |
Henkelman G, Arnaldsson A and Jónsson H 2006 Comp. Mater. Sci. 36 354
|
[48] |
Yang J H, Song S, Du S, Gao H J and Yakobson B I 2017 J. Phys. Chem. Lett. 8 4594
|
[49] |
Aydinol M, Kohan A, Ceder G, Cho K and Joannopoulos J 1997 Phys. Rev. B 56 1354
|
[50] |
Okamoto Y 2011 J. Electrochem. Soc. 159 A152
|
[51] |
Koyama Y, Tanaka I, Nagao M and Kanno R 2009 J. Power Sources 189 798
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|