Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 118801    DOI: 10.1088/1674-1056/27/11/118801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High capacity sodium-rich layered oxide cathode for sodium-ion batteries

Gen-Cai Guo(郭根材), Changhao Wang(王长昊), Bang-Ming Ming(明帮铭), Si-Wei Luo(罗斯玮), Heng Su(苏恒), Bo-Ya Wang(王博亚), Ming Zhang(张铭), Hai-Jun Yu(尉海军), Ru-Zhi Wang(王如志)
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Abstract  

Sodium-ion batteries have attracted significant recent attention currently considering the limited available lithium resource. However, the energy density of sodium-ion batteries is still insufficient compared to lithium-ion batteries, mainly because of the unavailability of high-energy cathode materials. In this work, a novel sodium-rich layered oxide material (Na2MnO3) is reported with a dynamical stability similar to that of the Li2MnO3 structure and a high capacity of 269.69 mA·h·g1, based on first-principles calculations. Sodium ion de-intercalation and anionic reaction processes are systematically investigated, in association with sodium ions migration phenomenon and structure stability during cycling of NaxMnO3 (1 ≤ x ≤ 2). In addition, the charge compensation during the initial charging process is mainly contributed by oxygen, where the small differences of the energy barriers of the paths 2c→4h, 4h→2c, 4h→4h, 2c→2b, and 4h→2b indicate the reversible sodium ion occupancy in transitional metal and sodium layers. Moreover, the slow decrease of the elastic constants is a clear indication of the high cycle stability. These results provide a framework to exploit the potential of sodium-rich layered oxide, which may facilitate the development of high-performance electrode materials for sodium-ion batteries.

Keywords:  sodium-rich layered oxides      first-principles calculations      sodium-ion diffusion  
Received:  29 July 2018      Revised:  04 September 2018      Accepted manuscript online: 
PACS:  88.80.ff (Batteries)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Nc (Total energy and cohesive energy calculations)  
  71.20.Dg (Alkali and alkaline earth metals)  
Fund: 

Project suppoted by the National Natural Science Foundation of China (Grant Nos. 11774017, 51761135129, and 51472010) and Beijing Municipal High Level Innovative Team Building Program, China (Grant No. IDHT20170502).

Corresponding Authors:  Hai-Jun Yu, Hai-Jun Yu     E-mail:  hj-yu@bjut.edu.cn;wrz@bjut.edu.cn

Cite this article: 

Gen-Cai Guo(郭根材), Changhao Wang(王长昊), Bang-Ming Ming(明帮铭), Si-Wei Luo(罗斯玮), Heng Su(苏恒), Bo-Ya Wang(王博亚), Ming Zhang(张铭), Hai-Jun Yu(尉海军), Ru-Zhi Wang(王如志) High capacity sodium-rich layered oxide cathode for sodium-ion batteries 2018 Chin. Phys. B 27 118801

[1] Idota Y, Kubota T, Matsufuji A, Maekawa Y and Miyasaka T 1997 Science 276 1395
[2] Yoo E, Kim J, Hosono E, Zhou H S, Kudo T and Honma I 2008 Nano Lett. 8 2277
[3] Oyama N, Tatsuma T, Sato T and Sotomura T 1995 Nature 373 598
[4] Ji L, Rao M, Aloni S, Wang L, Cairns E J and Zhang Y 2011 Energy Environ. Sci. 4 5053
[5] Wang Y and Cao G 2008 Adv. Mater. 20 2251
[6] Hannan M, Lipu M, Hussain A and Mohamed A 2017 Renew. Sust. Energ. Rev. 78 834
[7] Horeh N B, Mousavi S and Shojaosadati S 2016 J. Power Sources 320 257
[8] Ling S G, Guo J, Xiao R J and Chen L Q 2016 Chin. Phys. B 25 018208
[9] Slater M D, Kim D, Lee E and Johnson C S 2013 Adv. Funct. Mater. 23 947
[10] Hao H, Liu Z, Zhao F, Geng Y and Sarkis J 2017 Resour. Policy 51 100
[11] Palomares V, Serras P, Villaluenga I, Hueso K B, Carretero-González J and Rojo T 2012 Energy Environ. Sci. 5 5884
[12] Ellis B L and Nazar L F 2012 Curr. Opin. Solid St. M. 16 168
[13] Pan H, Hu Y S and Chen L 2013 Energy Environ. Sci. 6 2338
[14] Wessells C D, Peddada S V, Huggins R A and Cui Y 2011 Nano Lett. 11 5421
[15] Zheng Y, Zhou T, Zhang C, Mao J, Liu H and Guo Z 2016 Angew. Chem. Int. Ed. 55 3408
[16] Xie F, Zhang L, Su D, Jaroniec M and Qiao S Z 2017 Adv. Mater. 29 1700989
[17] Kim S W, Seo D H, Ma X, Ceder G and Kang K 2012 Adv. Energy Mater. 2 710
[18] Berthelot R, Carlier D and Delmas C 2011 Nat. Mater. 10 74
[19] Assadi M and KatayamaYoshida H 2017 Phys. Chem. Chem. Phys. 19 23425
[20] Cao Y, Xiao L, Wang W, Choi D, Nie Z, Yu J, Saraf L V, Yang Z and Liu J 2011 Adv. Mater. 23 3155
[21] Li Y, Feng X, Cui S, Shi Q, Mi L and Chen W 2016 Cryst. Eng. Comm. 18 3136
[22] Ding J J, Zhou Y N, Sun Q and Fu Z W 2012 Electrochem. Commun. 22 85
[23] Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y and Komaba S 2012 Nat. Mater. 11 512
[24] Kee Y, Dimov N, Champet S, Gregory D H and Okada S 2016 Ionics 22 2245
[25] Wang P F, You Y, Yin Y X and Guo Y G 2016 J. Mater. Chem. A 4 17660
[26] Yu H, Guo S, Zhu Y, Ishida M and Zhou H 2014 Chem. Commun. 50 457
[27] Chen H, Hao Q, Zivkovic O, Hautier G, Du L S, Tang Y, Hu Y Y, Ma X, Grey C P and Ceder G 2013 Chem. Mater. 25 2777
[28] Kim D, Lee E, Slater M, Lu W, Rood S and Johnson C S 2012 Electrochem. Commun. 18 66
[29] Mu L Q, Hu Y S and Chen L Q 2015 Chin. Phys. B 24 038202
[30] Li F, Zhu Y E, Sheng J, Yang L, Zhang Y and Zhou Z 2017 J. Mater. Chem. A 5 25276
[31] Yabuuchi N, Takeuchi M, Komaba S, Ichikawa S, Ozaki T and Inamasu T 2016 Chem. Commun. 52 2051
[32] Freire M, Kosova N, Jordy C, Chateigner D, Lebedev O, Maignan A and Pralong V 2016 Nat. Mater. 15 173
[33] McCalla E, Sougrati M T, Rousse G, Berg E J, Abakumov A, Recham N, Ramesha K, Sathiya M, Dominko R and Van Tendeloo G 2015 J. Am. Chem. Soc. 137 4804
[34] McCalla E, Abakumov A M, Saubanére M, Foix D, Berg E J, Rousse G, Doublet M L, Gonbeau D, Novák P and Van Tendeloo G 2015 Science 350 1516
[35] Yu H J, Ishikawa R, So Y G, Shibata N, Kudo T, Zhou H S and Ikuhara Y 2013 Angew. Chem. Int. Ed. 52 5969
[36] Yu H J and Zhou H S 2013 J. Phys. Chem. Lett. 4 1268
[37] Johnson C, Kim J, Lefief C, Li N, Vaughey J and Thackeray M 2004 Electrochem. Commun. 6 1085
[38] Zuo Y, Li B, Jiang N, Chu W, Zhang H, Zou R and Xia D 2018 Adv. Mater. 30 1707255
[39] Xiao R, Li H and Chen L 2012 Chem. Mater. 24 4242
[40] Li B, Yan H, Zuo Y and Xia D 2017 Chem. Mater. 29 2811
[41] Zheng L, Wang H, Luo M, Wang G, Wang Z and Ouyang C 2018 Solid State Ionics 320 210
[42] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[43] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[44] Liechtenstein A, Anisimov V and Zaanen J 1995 Phys. Rev. B 52 R5467
[45] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[46] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[47] Henkelman G, Arnaldsson A and Jónsson H 2006 Comp. Mater. Sci. 36 354
[48] Yang J H, Song S, Du S, Gao H J and Yakobson B I 2017 J. Phys. Chem. Lett. 8 4594
[49] Aydinol M, Kohan A, Ceder G, Cho K and Joannopoulos J 1997 Phys. Rev. B 56 1354
[50] Okamoto Y 2011 J. Electrochem. Soc. 159 A152
[51] Koyama Y, Tanaka I, Nagao M and Kanno R 2009 J. Power Sources 189 798
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[9] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!