|
|
A new class of states of reversible entanglement manipulation under positive partial transpose operations |
Jing Duan(段静)1, Yu Luo(罗宇)2, Yong-Ming Li(李永明)1,2 |
1 College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, China;
2 College of Computer Science, Shaanxi Normal University, Xi'an 710119, China |
|
|
Abstract We first study the reversibility for a class of states under the operations which completely preserve the positivity of partial transpose (PPT) and show that the entanglement cost is equal to the distillable entanglement for a rank-two mixed state on the 4⊗4 antisymmetric subspace under PPT operations. By using a similar method in finding the irreversibility, we also find that the value of a new efficiently computable additive lower bound Eη(ρ) for the asymptotic PPT-relative entropy of entanglement presented in[Phys. Rev. Lett. 119, 180506 (2017)] is equal to the regularized Rains' bound and an upper bound EN(ρ) for distillable entanglement for these states. Furthermore, we find states on the symmetric subspace satisfying the relation mentioned above, generalize the antisymmetric states and symmetric states in higher dimensions, and give a specific value for distillable entanglement and entanglement cost for these states under the PPT operations.
|
Received: 30 May 2018
Revised: 05 September 2018
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11671244). |
Corresponding Authors:
Yong-Ming Li
E-mail: liyongm@snnu.edu.cn
|
Cite this article:
Jing Duan(段静), Yu Luo(罗宇), Yong-Ming Li(李永明) A new class of states of reversible entanglement manipulation under positive partial transpose operations 2018 Chin. Phys. B 27 110305
|
[1] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press)
|
[2] |
Zad H A 2016 Chin. Phys. Lett. 33 90302
|
[3] |
Miao Q, Li X and Wu D W 2018 Acta Phys. Sin. 67 040301(in Chinese)
|
[4] |
You W L, Ren J and Gu L P 2018 Acta Phys. Sin. 67 020302(in Chinese)
|
[5] |
Zhao C Y and Zhang C M 2018 Chin. Phys. B 27 084204
|
[6] |
Golkar S and Tavassoly M K 2018 Chin. Phys. B 27 040303
|
[7] |
Yang L W and Xia Y J 2017 Chin. Phys. B 26 080302
|
[8] |
Vedral V and Plenio M B 1998 Phys. Rev. A 57 1619
|
[9] |
Rains E M 1999 Phys. Rev. A 60 179
|
[10] |
Horodecki M, Horodecki P and Horodecki R 2000 Phys. Rev. Lett. 84 4260
|
[11] |
Christandl M and Winter A 2004 J. Math. Phys. 45 829
|
[12] |
Wang X and Duan R Y 2017 Phys. Rev. A 95 062322
|
[13] |
Bennett C H, Divincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
|
[14] |
Huang Y 2014 New J. Phys. 16 033027
|
[15] |
Yura F 2003 J. Phys. A. Math. Gen. 36 15
|
[16] |
Rains E M 2001 IEEE Trans. Inf. Theroy 47 2921
|
[17] |
Audenaert K, Plenio M B and Eisert J 2003 Phys. Rev. Lett. 90 027901
|
[18] |
Miranowicz A and Ishizaka S 2008 Phys. Rev. A 78 032310
|
[19] |
Zinchenko Y, Friedland S and Gour G 2010 Phys. Rev. A 82 052336
|
[20] |
Vollbrecht K G H and Werner R F 2001 Phys. Rev. A 64 062307
|
[21] |
Terhal B M and Vollbrecht K G H 2000 Phys. Rev. Lett. 85 2625
|
[22] |
Wang X and Duan R Y 2016 Phys. Rev. A 94 050301
|
[23] |
Hayden P M, Horodecki M and Terhal B M 2001 J. Phys A. Math. Gen. 34 6891
|
[24] |
Audenaert K, Moor B De, Vollbrecht K G H and Werner R F 2002 Phys. Rev. A 66 032310
|
[25] |
Tomamichel M, Wilde M M and Winter A 2017 IEEE Trans. Inf. Theory 63 715
|
[26] |
Bennett C H, Bernstein H J, Popescu S and Schumacher B K 1996 Phys. Rev. A 53 2046
|
[27] |
Vidal G, Dür W and Cirac J I 2002 Phys. Rev. Lett. 89 027901
|
[28] |
Wang X and Duan R Y 2017 Phys. Rev. Lett. 119 180506
|
[29] |
Piani M and Watrous J 2015 Phys. Rev. Lett. 114 060404
|
[30] |
Jain R, Ji Z, Upadhyay S and Watrous J 2011 J. Assoc. Comput. Mach. 58 30
|
[31] |
Wang X and Duan R Y 2016 IEEE International Symposium on Information Theory, July 10-15, 2016 Barcelona, Spain, pp. 1690-1694
|
[32] |
Skrzypczyk P, Navascues M and Cavalcanti D 2014 Phys. Rev. Lett. 112 180404
|
[33] |
Berta M, Fawzi O and Scholz V B 2016 SIAM J. Optim. 26 1529
|
[34] |
Kogias I, Skrzypczyk P, CavalcantiZ D, Acin A and Adesso G 2015 Phys. Rev. Lett. 115 210401
|
[35] |
Li Y, Wang X and Duan R Y 2017 Phys. Rev. A 95 052346
|
[36] |
Plenio M B and Virmani S 2007 Quantum. Inf. Comput. 7 1
|
[37] |
Rains E M 2000 Phys. Rev. A 63 019902
|
[38] |
Vedral V, Plenio M B, Rippin M A and Knight P L W 1997 Phys. Rev. Lett. 78 2275
|
[39] |
Vedral V, Plenio M B, Jacobs K and Knight P L W 1997 Phys. Rev. A 56 4452
|
[40] |
Vedral V and Plenio M B 1998 Phys. Rev. A 57 1619
|
[41] |
Hayashi M 2017 Quantum Information Theroy (New York:Springer)
|
[42] |
Plenio M B 2005 Phys. Rev. Lett. 95 090503
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|