Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 110305    DOI: 10.1088/1674-1056/27/11/110305
GENERAL Prev   Next  

A new class of states of reversible entanglement manipulation under positive partial transpose operations

Jing Duan(段静)1, Yu Luo(罗宇)2, Yong-Ming Li(李永明)1,2
1 College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, China;
2 College of Computer Science, Shaanxi Normal University, Xi'an 710119, China
Abstract  

We first study the reversibility for a class of states under the operations which completely preserve the positivity of partial transpose (PPT) and show that the entanglement cost is equal to the distillable entanglement for a rank-two mixed state on the 4⊗4 antisymmetric subspace under PPT operations. By using a similar method in finding the irreversibility, we also find that the value of a new efficiently computable additive lower bound Eη(ρ) for the asymptotic PPT-relative entropy of entanglement presented in[Phys. Rev. Lett. 119, 180506 (2017)] is equal to the regularized Rains' bound and an upper bound EN(ρ) for distillable entanglement for these states. Furthermore, we find states on the symmetric subspace satisfying the relation mentioned above, generalize the antisymmetric states and symmetric states in higher dimensions, and give a specific value for distillable entanglement and entanglement cost for these states under the PPT operations.

Keywords:  distillable entanglement      entanglement cost      semidefinite programming  
Received:  30 May 2018      Revised:  05 September 2018      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.67.Bg (Entanglement production and manipulation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11671244).

Corresponding Authors:  Yong-Ming Li     E-mail:  liyongm@snnu.edu.cn

Cite this article: 

Jing Duan(段静), Yu Luo(罗宇), Yong-Ming Li(李永明) A new class of states of reversible entanglement manipulation under positive partial transpose operations 2018 Chin. Phys. B 27 110305

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press)
[2] Zad H A 2016 Chin. Phys. Lett. 33 90302
[3] Miao Q, Li X and Wu D W 2018 Acta Phys. Sin. 67 040301(in Chinese)
[4] You W L, Ren J and Gu L P 2018 Acta Phys. Sin. 67 020302(in Chinese)
[5] Zhao C Y and Zhang C M 2018 Chin. Phys. B 27 084204
[6] Golkar S and Tavassoly M K 2018 Chin. Phys. B 27 040303
[7] Yang L W and Xia Y J 2017 Chin. Phys. B 26 080302
[8] Vedral V and Plenio M B 1998 Phys. Rev. A 57 1619
[9] Rains E M 1999 Phys. Rev. A 60 179
[10] Horodecki M, Horodecki P and Horodecki R 2000 Phys. Rev. Lett. 84 4260
[11] Christandl M and Winter A 2004 J. Math. Phys. 45 829
[12] Wang X and Duan R Y 2017 Phys. Rev. A 95 062322
[13] Bennett C H, Divincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[14] Huang Y 2014 New J. Phys. 16 033027
[15] Yura F 2003 J. Phys. A. Math. Gen. 36 15
[16] Rains E M 2001 IEEE Trans. Inf. Theroy 47 2921
[17] Audenaert K, Plenio M B and Eisert J 2003 Phys. Rev. Lett. 90 027901
[18] Miranowicz A and Ishizaka S 2008 Phys. Rev. A 78 032310
[19] Zinchenko Y, Friedland S and Gour G 2010 Phys. Rev. A 82 052336
[20] Vollbrecht K G H and Werner R F 2001 Phys. Rev. A 64 062307
[21] Terhal B M and Vollbrecht K G H 2000 Phys. Rev. Lett. 85 2625
[22] Wang X and Duan R Y 2016 Phys. Rev. A 94 050301
[23] Hayden P M, Horodecki M and Terhal B M 2001 J. Phys A. Math. Gen. 34 6891
[24] Audenaert K, Moor B De, Vollbrecht K G H and Werner R F 2002 Phys. Rev. A 66 032310
[25] Tomamichel M, Wilde M M and Winter A 2017 IEEE Trans. Inf. Theory 63 715
[26] Bennett C H, Bernstein H J, Popescu S and Schumacher B K 1996 Phys. Rev. A 53 2046
[27] Vidal G, Dür W and Cirac J I 2002 Phys. Rev. Lett. 89 027901
[28] Wang X and Duan R Y 2017 Phys. Rev. Lett. 119 180506
[29] Piani M and Watrous J 2015 Phys. Rev. Lett. 114 060404
[30] Jain R, Ji Z, Upadhyay S and Watrous J 2011 J. Assoc. Comput. Mach. 58 30
[31] Wang X and Duan R Y 2016 IEEE International Symposium on Information Theory, July 10-15, 2016 Barcelona, Spain, pp. 1690-1694
[32] Skrzypczyk P, Navascues M and Cavalcanti D 2014 Phys. Rev. Lett. 112 180404
[33] Berta M, Fawzi O and Scholz V B 2016 SIAM J. Optim. 26 1529
[34] Kogias I, Skrzypczyk P, CavalcantiZ D, Acin A and Adesso G 2015 Phys. Rev. Lett. 115 210401
[35] Li Y, Wang X and Duan R Y 2017 Phys. Rev. A 95 052346
[36] Plenio M B and Virmani S 2007 Quantum. Inf. Comput. 7 1
[37] Rains E M 2000 Phys. Rev. A 63 019902
[38] Vedral V, Plenio M B, Rippin M A and Knight P L W 1997 Phys. Rev. Lett. 78 2275
[39] Vedral V, Plenio M B, Jacobs K and Knight P L W 1997 Phys. Rev. A 56 4452
[40] Vedral V and Plenio M B 1998 Phys. Rev. A 57 1619
[41] Hayashi M 2017 Quantum Information Theroy (New York:Springer)
[42] Plenio M B 2005 Phys. Rev. Lett. 95 090503
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[3] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[4] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[5] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[6] Novel traveling quantum anonymous voting scheme via GHZ states
Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Chin. Phys. B, 2023, 32(2): 020303.
[7] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[8] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[9] Tolerance-enhanced SU(1,1) interferometers using asymmetric gain
Jian-Dong Zhang(张建东) and Shuai Wang(王帅). Chin. Phys. B, 2023, 32(1): 010306.
[10] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[11] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[12] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[13] Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters
Junqin Cao(曹君勤), Zhixin Chen(陈志歆), Yaxin Wang(王亚新), Tianfeng Feng(冯田峰), Zhihao Li(李志浩), Zeyu Xing(邢泽宇), Huashan Li(李华山), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2022, 31(11): 114204.
[14] Fringe visibility and correlation in Mach-Zehnder interferometer with an asymmetric beam splitter
Yan-Jun Liu(刘彦军), Mei-Ya Wang(王美亚), Zhong-Cheng Xiang(相忠诚), and Hai-Bin Wu(吴海滨). Chin. Phys. B, 2022, 31(11): 110305.
[15] Passively stabilized single-photon interferometer
Hai-Long Liu(刘海龙), Min-Jie Wang(王敏杰), Jia-Xin Bao(暴佳鑫), Chao Liu(刘超), Ya Li(李雅), Shu-Jing Li(李淑静), and Hai Wang(王海). Chin. Phys. B, 2022, 31(11): 110306.
No Suggested Reading articles found!