Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 106102    DOI: 10.1088/1674-1056/27/10/106102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of Al component content on optoelectronic properties of AlxGa1-xN

Yan-Jun Ji(纪延俊)1,2, Jun-Ping Wang(王俊平)1,2, You-Wen Liu(刘友文)1
1 College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
2 College of Aeronautical Engineering, Bingzhou University, Bingzhou 256603, China
Abstract  

Using density functional theory, the electronic structures, lattice constants, formation energies, and optical properties of AlxGa1-xN are determined with Al component content x in a range from 0 to 1. As x increases, the lattice constants decrease in e-exponential form, and the band gap increases with a band bending parameter b=0.3954. The N-Al interaction force in the (0001) direction is greater than the N-Ga interaction force, while the N-Al interaction force is less than the N-Ga interaction force in the (1010) direction. The formation energies under different Al component content are negative and increase with Al component content increasing. The static dielectric function decreases, the absorption edge has a blue shift, and the energy loss spectrum moves to high energy with the Al component content increasing.

Keywords:  GaN      photocathode      electronic structure      optical properties  
Received:  19 June 2018      Revised:  22 July 2018      Accepted manuscript online: 
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  71.22.+i (Electronic structure of liquid metals and semiconductors and their Alloys)  
  61.80.Ba (Ultraviolet, visible, and infrared radiation effects (including laser radiation))  
  36.20.Kd (Electronic structure and spectra)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61171042).

Corresponding Authors:  Yan-Jun Ji, You-Wen Liu     E-mail:  jiyjun@126.com;youwen@163.com

Cite this article: 

Yan-Jun Ji(纪延俊), Jun-Ping Wang(王俊平), You-Wen Liu(刘友文) Effects of Al component content on optoelectronic properties of AlxGa1-xN 2018 Chin. Phys. B 27 106102

[1] Shao J P, Han Y J, Wang L, Jiang Y, Xi G Y, Li H T, Zhao W and Luo Y 2006 Chin. Phys. Lett. 23 432
[2] Zhang W, Xu J, Ye W, Li Y, Qi Z Q, Dai J N, Wu, Z H, Chen C Q, Yin J, Li J, Jiang H and Fang Y Y 2015 Appl. Phys. Lett. 106 021112
[3] Isamu A and Hiroshi A 1997 J. Appl. Phys. 36 5393
[4] Bar-Ilan A H, Zamir S, Katz O, Meyler B and Salzman 2001 Mater. Sci. Eng. A 302 14
[5] Siegmund O H W, Tremsin A S, Vallerga J V, Mcphate J B and Hull J S 2008 Proc. SPIE 7021 70211B
[6] Zhao H P, Liu G Y and Tansu N 2010 Appl. Phys. Lett. 97 131114
[7] Chow W W 2011 Opt. Express 19 21818
[8] Farrell R M, Hsu P S, Haeger D A, Fujito K, DenBaars S P, Speck J S and Nakamura S 2010 Appl. Phys. Lett. 96 231113
[9] Zhang J, Zhao H P and Tansu N 2011 Appl. Phys. Lett. 98 171111
[10] Dora Y, Arpan C, Lee M C, Stacia K, Stephen D B and Umesh M 2006 IEEE Electron. Dev. L 27 713
[11] Wang X H, Chang B K, Ren L and Gao P 2011 Appl. Phys. Lett. 98 1
[12] Bai, J, Gong, Y P, Li, Z and Wang T 2018 Sol. Energy Mater. Sol. Cells 175 47
[13] Du X Q, Chang B K, Qian Y S and Pin G 2011 Chin. Opt. Lett. 9 010401
[14] Liu, Sh M, Wang, Q, Xiao H L, Wang K, Wang C M, Wang X L, Ge W K and Wang Z G 2017 Superlattices & Microstructures 109 194
[15] Ji Y J, Du Y J and Wang M S 2013 Chin. Phys. B 22 117103
[16] Han D Y, Li H J, Zhao G J, Wei H Y, Yang S Y and Wang L S 2016 Chin. Phys. B 25 048105
[17] Li X H, Xie H G, Ponce F A, Ryou J H and Detchprohm T 2015 Appl. Phys. Lett. 107 241109
[18] Detchprohm T, Liu Y S, Mehta K, Wang S, Xie H G, Kao T T, Shen S C, Yoder P D, Ponce F A and Dupuis R 2017 Appl. Phys. Lett. 110 011105
[19] Xie J, Mita S, Bryan Z, Guo W and Hussey L 2013 Appl. Phys. Lett. 102 171102
[20] Yao Ch J, Ye X C and Sun R 2017 Appl. Phys. A 123 439
[21] Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmatskaya E V and Nobes R H 2000 J. Quantum Chem. 77 895
[22] Vanderbilt D 1990 Phys. Rev. B 41 7892
[23] Dmitriev A V, Oruzheinikov A L, eds. Gaskill D K, Brandt C D and Nemanich R J 1996 Material Research Society Symposium Proceedings, Pittsburgh PA 423 69
[24] Bougrov V, Levinshtein M E, Rumyantsev S L, Zubrilov A 2001 eds. Levinshtein M E, Rumyantsev S L and Shur M S (New York:John Wiley & Sons, Inc.) p. 1
[25] Du Y J, Chang B K, Zhang J J, Wang X H, Li B and Wang M S 2011 Adv. Mater. Rapid Commun. 5 1050
[26] Vegard L 1921 Z. F. Phys. 5 17
[27] Angerer H, Brunner D, FreudenbeRg F, Ambacher O, Stutzmann M, Hopier R, Metzger T, Bom E, Dollinger G, Bergmaier A, Karsch S and Komer H J 1997 Appl. Phys. Lett. 71 1504
[28] Lee S R, Wright A F, Crawford M H, Petersen G A, Han J and Biefeld R M 1999 Appl. Phys. Lett. 74 3344
[29] Roberto N G, Armando R S, Alvaro P A and Donald H G 2008 Rev. Mex. Fis. 54 111
[30] Yun F, Reshchikov M A, He L, King T, Morkoç H, Novak S W and Wei L 2002 J. Appl. Phys. 92 4837
[31] Nepal N, Li J, Nakarmi M L, Lin J Y and Jiang H X 2005 Appl. Phys. Lett. 7 242104
[32] Brunner D, Angerer H, Bustarret E, Freudenberg F, Hopler R, Dimitrov R, Ambacher O and Stutzmann M 1997 J. Appl. Phys. 82 5090
[33] Shan W, Ager Ⅲ J W, Yu K M and Walukiewicz W 1999 J. Appl. Phys. 85 8505
[34] Katz, O, Meyler B, Tisch U, Salzman J 2001 Phys. Status Solidi (A) Appl. Res. 188 789
[35] Liou B T, Kuo Y K 2012 Appl. Phys. A 106 1013
[36] Yu X H, Du Y J, Chang B K, Ge Z H and Wang H G 2013 Optik 124 4402
[37] Lucarini V, Sarrinen J J, Peiponen K E and Vartiainen E M 2005 Kramers-Kronig Springer Series in Optical Seciences (Berlin/Heidelberg/New York:Springer)
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[4] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[5] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[6] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[7] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[8] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[9] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[10] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[11] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[12] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[13] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[14] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[15] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
No Suggested Reading articles found!