CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effects of Al component content on optoelectronic properties of AlxGa1-xN |
Yan-Jun Ji(纪延俊)1,2, Jun-Ping Wang(王俊平)1,2, You-Wen Liu(刘友文)1 |
1 College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
2 College of Aeronautical Engineering, Bingzhou University, Bingzhou 256603, China |
|
|
Abstract Using density functional theory, the electronic structures, lattice constants, formation energies, and optical properties of AlxGa1-xN are determined with Al component content x in a range from 0 to 1. As x increases, the lattice constants decrease in e-exponential form, and the band gap increases with a band bending parameter b=0.3954. The N-Al interaction force in the (0001) direction is greater than the N-Ga interaction force, while the N-Al interaction force is less than the N-Ga interaction force in the (1010) direction. The formation energies under different Al component content are negative and increase with Al component content increasing. The static dielectric function decreases, the absorption edge has a blue shift, and the energy loss spectrum moves to high energy with the Al component content increasing.
|
Received: 19 June 2018
Revised: 22 July 2018
Accepted manuscript online:
|
PACS:
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
71.22.+i
|
(Electronic structure of liquid metals and semiconductors and their Alloys)
|
|
61.80.Ba
|
(Ultraviolet, visible, and infrared radiation effects (including laser radiation))
|
|
36.20.Kd
|
(Electronic structure and spectra)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61171042). |
Corresponding Authors:
Yan-Jun Ji, You-Wen Liu
E-mail: jiyjun@126.com;youwen@163.com
|
Cite this article:
Yan-Jun Ji(纪延俊), Jun-Ping Wang(王俊平), You-Wen Liu(刘友文) Effects of Al component content on optoelectronic properties of AlxGa1-xN 2018 Chin. Phys. B 27 106102
|
[1] |
Shao J P, Han Y J, Wang L, Jiang Y, Xi G Y, Li H T, Zhao W and Luo Y 2006 Chin. Phys. Lett. 23 432
|
[2] |
Zhang W, Xu J, Ye W, Li Y, Qi Z Q, Dai J N, Wu, Z H, Chen C Q, Yin J, Li J, Jiang H and Fang Y Y 2015 Appl. Phys. Lett. 106 021112
|
[3] |
Isamu A and Hiroshi A 1997 J. Appl. Phys. 36 5393
|
[4] |
Bar-Ilan A H, Zamir S, Katz O, Meyler B and Salzman 2001 Mater. Sci. Eng. A 302 14
|
[5] |
Siegmund O H W, Tremsin A S, Vallerga J V, Mcphate J B and Hull J S 2008 Proc. SPIE 7021 70211B
|
[6] |
Zhao H P, Liu G Y and Tansu N 2010 Appl. Phys. Lett. 97 131114
|
[7] |
Chow W W 2011 Opt. Express 19 21818
|
[8] |
Farrell R M, Hsu P S, Haeger D A, Fujito K, DenBaars S P, Speck J S and Nakamura S 2010 Appl. Phys. Lett. 96 231113
|
[9] |
Zhang J, Zhao H P and Tansu N 2011 Appl. Phys. Lett. 98 171111
|
[10] |
Dora Y, Arpan C, Lee M C, Stacia K, Stephen D B and Umesh M 2006 IEEE Electron. Dev. L 27 713
|
[11] |
Wang X H, Chang B K, Ren L and Gao P 2011 Appl. Phys. Lett. 98 1
|
[12] |
Bai, J, Gong, Y P, Li, Z and Wang T 2018 Sol. Energy Mater. Sol. Cells 175 47
|
[13] |
Du X Q, Chang B K, Qian Y S and Pin G 2011 Chin. Opt. Lett. 9 010401
|
[14] |
Liu, Sh M, Wang, Q, Xiao H L, Wang K, Wang C M, Wang X L, Ge W K and Wang Z G 2017 Superlattices & Microstructures 109 194
|
[15] |
Ji Y J, Du Y J and Wang M S 2013 Chin. Phys. B 22 117103
|
[16] |
Han D Y, Li H J, Zhao G J, Wei H Y, Yang S Y and Wang L S 2016 Chin. Phys. B 25 048105
|
[17] |
Li X H, Xie H G, Ponce F A, Ryou J H and Detchprohm T 2015 Appl. Phys. Lett. 107 241109
|
[18] |
Detchprohm T, Liu Y S, Mehta K, Wang S, Xie H G, Kao T T, Shen S C, Yoder P D, Ponce F A and Dupuis R 2017 Appl. Phys. Lett. 110 011105
|
[19] |
Xie J, Mita S, Bryan Z, Guo W and Hussey L 2013 Appl. Phys. Lett. 102 171102
|
[20] |
Yao Ch J, Ye X C and Sun R 2017 Appl. Phys. A 123 439
|
[21] |
Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmatskaya E V and Nobes R H 2000 J. Quantum Chem. 77 895
|
[22] |
Vanderbilt D 1990 Phys. Rev. B 41 7892
|
[23] |
Dmitriev A V, Oruzheinikov A L, eds. Gaskill D K, Brandt C D and Nemanich R J 1996 Material Research Society Symposium Proceedings, Pittsburgh PA 423 69
|
[24] |
Bougrov V, Levinshtein M E, Rumyantsev S L, Zubrilov A 2001 eds. Levinshtein M E, Rumyantsev S L and Shur M S (New York:John Wiley & Sons, Inc.) p. 1
|
[25] |
Du Y J, Chang B K, Zhang J J, Wang X H, Li B and Wang M S 2011 Adv. Mater. Rapid Commun. 5 1050
|
[26] |
Vegard L 1921 Z. F. Phys. 5 17
|
[27] |
Angerer H, Brunner D, FreudenbeRg F, Ambacher O, Stutzmann M, Hopier R, Metzger T, Bom E, Dollinger G, Bergmaier A, Karsch S and Komer H J 1997 Appl. Phys. Lett. 71 1504
|
[28] |
Lee S R, Wright A F, Crawford M H, Petersen G A, Han J and Biefeld R M 1999 Appl. Phys. Lett. 74 3344
|
[29] |
Roberto N G, Armando R S, Alvaro P A and Donald H G 2008 Rev. Mex. Fis. 54 111
|
[30] |
Yun F, Reshchikov M A, He L, King T, Morkoç H, Novak S W and Wei L 2002 J. Appl. Phys. 92 4837
|
[31] |
Nepal N, Li J, Nakarmi M L, Lin J Y and Jiang H X 2005 Appl. Phys. Lett. 7 242104
|
[32] |
Brunner D, Angerer H, Bustarret E, Freudenberg F, Hopler R, Dimitrov R, Ambacher O and Stutzmann M 1997 J. Appl. Phys. 82 5090
|
[33] |
Shan W, Ager Ⅲ J W, Yu K M and Walukiewicz W 1999 J. Appl. Phys. 85 8505
|
[34] |
Katz, O, Meyler B, Tisch U, Salzman J 2001 Phys. Status Solidi (A) Appl. Res. 188 789
|
[35] |
Liou B T, Kuo Y K 2012 Appl. Phys. A 106 1013
|
[36] |
Yu X H, Du Y J, Chang B K, Ge Z H and Wang H G 2013 Optik 124 4402
|
[37] |
Lucarini V, Sarrinen J J, Peiponen K E and Vartiainen E M 2005 Kramers-Kronig Springer Series in Optical Seciences (Berlin/Heidelberg/New York:Springer)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|