CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Unusual softening behavior of yield strength in niobium at high pressures |
Qiu-Min Jing(敬秋民), Qiang He(何强), Yi Zhang(张毅), Shou-Rui Li(李守瑞), Lei Liu(柳雷), Qi-Yue Hou(侯琪玥), Hua-Yun Geng(耿华运), Yan Bi(毕延), Yu-Ying Yu(俞宇颖), Qiang Wu(吴强) |
National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China |
|
|
Abstract In situ synchrotron angle-dispersive x-ray diffraction experiments on niobium powders have been conducted at pressures up to 61 GPa and room temperature using the diamond anvil cell technique. From the full width at half maximum of the measured diffraction lines, the yield strength was derived with the line-width analysis theory. The niobium powder sample was found to be compressed more packed firstly and then yielded at ~14 GPa-18 GPa. Following an initial increase in the yield strength with pressure, an obvious decrease was observed occurring at ~42 GPa-47 GPa accompanying with a typical pressure dependence above 47 GPa. The experimentally observed anomalous softening of the yield strength in niobium surprisingly follows the trend of the predicted unusual softening in the shear modulus by the recent theoretical investigations. The possible mechanisms, applicable to interpret the yield strength softening of materials at high pressure, were also discussed in detail.
|
Received: 19 May 2018
Revised: 09 July 2018
Accepted manuscript online:
|
PACS:
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
07.35.+k
|
(High-pressure apparatus; shock tubes; diamond anvil cells)
|
|
62.20.F-
|
(Deformation and plasticity)
|
|
64.30.Ef
|
(Equations of state of pure metals and alloys)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1530134, U1730248, 11772312, and 11504354). |
Corresponding Authors:
Qiu-Min Jing
E-mail: j_qm@163.com
|
Cite this article:
Qiu-Min Jing(敬秋民), Qiang He(何强), Yi Zhang(张毅), Shou-Rui Li(李守瑞), Lei Liu(柳雷), Qi-Yue Hou(侯琪玥), Hua-Yun Geng(耿华运), Yan Bi(毕延), Yu-Ying Yu(俞宇颖), Qiang Wu(吴强) Unusual softening behavior of yield strength in niobium at high pressures 2018 Chin. Phys. B 27 106201
|
[1] |
Landa A, Klepeis J, Söderlind P, Naumov I, Velikokhatnyi O, Vitos L and Ruban A 2006 J. Phys.:Condens. Matter 18 5079
|
[2] |
Landa A, Klepeis J, Söderlind P, Naumov I, Velikokhatnyi O, Vitos L and Ruban A 2006 J. Phys. Chem. Solids 67 2056
|
[3] |
Landa A, Söderlind P, Ruban A, Peil O E and Vitos L 2009 Phys. Rev. Lett. 103 235501
|
[4] |
Ding Y, Ahuja R, Shu J, Chow P, Luo W and Mao H K 2007 Phys. Rev. Lett. 98 085502
|
[5] |
Jenei Z, Liermann H P, Cynn H, Klepeis J H P, Baer B J and Evans W J 2011 Phys. Rev. B 83 054101
|
[6] |
Yu Y, Tan Y, Dai C, Li X, Li Y, Wu Q and Tan H 2014 Appl. Phys. Lett. 105 201910
|
[7] |
Lee B, Rudd R E, Klepeis J E, Söderlind P and Landa A 2007 Phys. Rev. B 75 180101
|
[8] |
Krasilnikov O M, Vekilov Y K, Mosyagin I Y, Isaev E I and Bondarenko N G 2012 J. Phys.:Condens. Matter 24 195402
|
[9] |
Wang Y X, Wu Q, Chen X R and Geng H 2016 Sci. Rep. 6 32419
|
[10] |
Antonangeli D, Farber D L, Said A H, Benedetti L R, Aracne C M, Landa A, Söderlind P and Klepeis J E 2010 Phys. Rev. B 82 132101
|
[11] |
Yang L H, Söderlind P and Moriarty J A 2001 Mater. Sci. Eng. A 309-310 102
|
[12] |
Klepeis J H P, Cynn H, Evans W J, Rudd R E and Yang L H 2010 Phys. Rev. B 81 134107
|
[13] |
Jing Q, Wu Q, Xu J, Bi Y, Liu L, Liu S, Zhang Y and Geng H 2015 J. Appl. Phys. 117 055903
|
[14] |
Dewaele A and Loubeyre P 2005 Phys. Rev. B 72 134106
|
[15] |
Singh A K and Liermann H P 2011 J. Appl. Phys. 109 113539
|
[16] |
Singh A K and Liermann H P 2015 J. Appl. Phys. 118 065903
|
[17] |
Mao H K, Shu J, Shen G, Hemley R J, Li B and Singh A K 1998 Nature 396 741
|
[18] |
Singh A K 1993 J. Appl. Phys. 73 4278
|
[19] |
Singh A K 2009 J. Appl. Phys. 106 043514
|
[20] |
Weidner D J, Wang Y and Vaughan M T 1994 Geophys. Res. Lett. 21 753
|
[21] |
Langford J I 1971 J. Appl. Crystallogr. 4 164
|
[22] |
Gerward L, Morup S and Topsoe H 1976 J. Appl. Phys. 47 822
|
[23] |
Singh A K, Liermann H P and Saxena S K 2004 Solid State Commun. 132 795
|
[24] |
Singh A K, Liermann H P, Akahama Y and Kawamura H 2007 J. Appl. Phys. 101 123526
|
[25] |
Liu L, Song H X, Wang Z, Geng H, Jing Q, Zhang Y, Liu S, Xiang S, Bi Y, Xu J, Li Y, Li X and Liu J 2012 J. Appl. Phys. 112 013532
|
[26] |
Guinan M and Steinberg D 1975 J. Phys. Chem. Solids 36 829
|
[27] |
Katahara K W, Manghnani M H and Fisher E S 1976 J. Appl. Phys. 47 434
|
[28] |
Liu L, Bi Y and Xu J 2013 Chin. Phys. B 22 056201
|
[29] |
Hammersley A P, Svensson S O, Hanfl, M, Fitch A N and Hausermann D 1996 High Press. Res. 14 235
|
[30] |
Toby B H 2001 J. Appl. Crystallogr. 34 210
|
[31] |
Zhang J, Wang L, Weidner D J, Uchida T and Xu J 2002 Am. Mineralogist 87 1005
|
[32] |
Bridgman P W 1953 J. Appl. Phys. 24 560
|
[33] |
Bridgman P W 1935 Phys. Rev. 48 825
|
[34] |
Meade C and Jeanloz R 1988 J. Geophys. Res. 93 3270
|
[35] |
Shieh S R and Duffy T S 2002 Phys. Rev. Lett. 89 255507
|
[36] |
Takemura K and Singh A K 2006 Phys. Rev. B 73 224119
|
[37] |
Singh A K and Takemura K 2001 J. Appl. Phys. 90 3269
|
[38] |
Wang Y X, Geng H, Wu Q, Chen X R and Sun Y 2017 J. Appl. Phys. 122 235903
|
[39] |
Meade C and Jeanloz R 1988 J. Geophys. Res. 93 3261
|
[40] |
Weir S T, Akella J, Ruddle C, Goodwin T and Husing L 1998 Phys. Rev. B 58 11258
|
[41] |
Bosak A, Krisch M, Fischer I, Huotari S and Monaco G 2007 Phys. Rev. B 75 064106
|
[42] |
Merkel S, Miyajima N, Antonangeli D, Fiquet G and Yagi T 2006 J. Appl. Phys. 100 023510
|
[43] |
Merkel S, Tomé C and Wenk H R 2009 Phys. Rev. B 79 064110
|
[44] |
Jing Q "Finite element modeling on deformation of diamond and gasket under diamond anvil cell loading" (unpublished)
|
[45] |
Steinberg D J, Cochran S G and Guinan M W 1980 J. Appl. Phys. 51 1498
|
[46] |
Ao T, Knudson M D, Asay J R and Davis J P 2009 J. Appl. Phys. 106 103507
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|