Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 018806    DOI: 10.1088/1674-1056/27/1/018806
Special Issue: TOPICAL REVIEW — New generation solar cells
TOPICAL REVIEW—New generation solar cells Prev   Next  

Theoretical study on the kesterite solar cells based on Cu2ZnSn(S,Se)4 and related photovoltaic semiconductors

Dingrong Liu(刘定荣)1, Dan Han(韩丹)1, Menglin Huang(黄梦麟)1, Xian Zhang(张弦)1, Tao Zhang(张涛)1, Chenmin Dai(戴称民)1, Shiyou Chen(陈时友)1,2
1 Key Laboratory of Polar Materials and Devices(MOE), East China Normal University, Shanghai 200241, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  

The kesterite thin film solar cells based on the quaternary Cu2ZnSnS4 and Cu2ZnSnSe4 and their alloys Cu2ZnSn(S,Se)4 have been considered as environment-friendly and non-toxic alternatives to the currently commercialized CdTe and Cu(In,Ga)Se2 thin film solar cells. From the theoretical point of view, we will review how the group I2-Ⅱ-IV-VI4 quaternary compound semiconductors are derived from the binary CdTe and the ternary CuInSe2 or CuGaSe2 through the cation mutation, and how the crystal structure and electronic band structure evolve as the component elements change. The increased structural and chemical freedom in these quaternary semiconductors opens up new possibility for the tailoring of material properties and design of new light-absorber semiconductors. However, the increased freedom also makes the development of high-efficiency solar cells more challenging because much more intrinsic point defects, secondary phases, surfaces, and grain-boundaries can exist in the thin films and influence the photovoltaic performance in a way different from that in the conventional CdTe and Cu(In,Ga)Se2 solar cells. The experimental characterization of the properties of defects, secondary phase, and grain-boundaries is currently not very efficient and direct, especially for these quaternary compounds. First-principles calculations have been successfully used in the past decade for studying these properties. Here we will review the theoretical progress in the study of the mixed-cation and mixed-anion alloys of the group I2-Ⅱ-IV-VI4 semiconductors, defects, alkaline dopants, and grain boundaries, which provided very important information for the optimization of the kesterite solar cell performance.

Keywords:  kesterite thin film solar cells      Cu2ZnSnS4 and Cu2ZnSnSe4      first-principles calculations      defects and dopants  
Received:  16 October 2017      Revised:  17 November 2017      Accepted manuscript online: 
PACS:  88.40.H- (Solar cells (photovoltaics))  
  71.20.Nr (Semiconductor compounds)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0700700), the National Natural Science Foundation of China (Grant Nos. 61574059 and 61722402), Shu-Guang Program, China (Grant No. 15SG20), and CC of ECNU, China.

Corresponding Authors:  Shiyou Chen     E-mail:  chensy@ee.ecnu.edu.cn

Cite this article: 

Dingrong Liu(刘定荣), Dan Han(韩丹), Menglin Huang(黄梦麟), Xian Zhang(张弦), Tao Zhang(张涛), Chenmin Dai(戴称民), Shiyou Chen(陈时友) Theoretical study on the kesterite solar cells based on Cu2ZnSn(S,Se)4 and related photovoltaic semiconductors 2018 Chin. Phys. B 27 018806

[1] Chen S, Gong X, Walsh A and Wei S H 2009 Appl. Phys. Lett. 94 041903
[2] Todorov T K, Reuter K B and Mitzi D B 2010 Adv. Mater. 22 E156
[3] Katagiri H, Jimbo K, Maw W S, Oishi K, Yamazaki M, Araki H and Takeuchi A 2009 Thin Solid Films 517 2455
[4] Chen S 2016 Semiconductor Materials for Solar Photovoltaic Cells (Switzerland:Springer International Publishing) pp. 75-103
[5] Hahn H and Schulze H 1965 Naturwiss 52 426
[6] Schleich D M and Wold A 1977 Mater. Res. Bull. 12 111
[7] Parasyuk O V, Gulay L D, Romanyuk Y E and Piskach L V 2001 J. Alloys Compd. 329 202
[8] Parasyuk O V, Piskach L V, Romanyuk Y E, Olekseyuk I D, Zaremba V I and Pekhnyo V I 2005 J. Alloys Compd. 397 85
[9] Chen S, Gong X G, Walsh A and Wei S H 2009 Phys. Rev. B 79 165211
[10] Chen S, Walsh A, Luo Y, Yang J H, Gong X G and Wei S H 2010 Phys. Rev. B 82 195203
[11] Cai Z H, Narang P, Atwater H A, Chen S Y, Duan C G, Zhu Z Q and Chu J H 2015 Chem. Mater. 27 7757
[12] Fan F J, Wu L and Yu S H 2014 Energy Environ. Sci. 7 190
[13] Walsh A, Chen S, Wei S H and Gong X G 2012 Adv. Energy Mater. 2 400
[14] Chen S, Narang P, Atwater H A and Wang L W 2014 Adv. Mater. 26 311
[15] Narang P, Chen S, Coronel N C, Gul S, Yano J, Wang L W, Lewis N S and Atwater H A 2014 Adv. Mater. 26 1235
[16] Ito K and Nakazawa T 1988 Jpn. J. Appl. Phys. 27 2094
[17] Katagiri H 1996 Tech. Dig. 9th International Photovoltaic Science and Engineering Conference, Miyazaki, p. 745
[18] Friedlmeier T M, Wieser N, Walter T, Dittrich H and Schock H W 1997 Proceedings of the 14th European Photovoltaic Solar Energy Conference, Barcelona, Spain, p. 1242
[19] Madelung O 2004 Semiconductors:Data Handbook (New York:Springer)
[20] Schorr S 2011 Sol. Energy Mater. Sol. Cells 95 1482
[21] Todorov T K, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y and Mitzi D B 2013 Adv. Energy Mater. 3 34
[22] Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y and Mitzi D B 2013 Adv. Energy Mater. 4 1301465
[23] Ahn S, Jung S, Gwak J, Cho A, Shin K, Yoon K, Park D, Cheong H and Yun J H 2010 Appl. Phys. Lett. 97 021905
[24] Chen S, Walsh A, Gong X G and Wei S H 2013 Adv. Mater. 25 1522
[25] Yuan Z K, Xu P and Chen S Y 2015 Acta Phys. Sin. 64 186102 (in Chinese)
[26] Bernard J E, Ferreira L G, Wei S H and Zunger A 1988 Phys. Rev. B 38 6338
[27] Magri R, Wei S H and Zunger A 1990 Phys. Rev. B 42 11388
[28] Zhang Y, Sun X, Zhang P, Yuan X, Huang F and Zhang W 2012 J. Appl. Phys. 111 063709
[29] Satoshi N, Tsuyoshi M and Takahiro W 2010 Jpn. J. Appl. Phys. 49 121203
[30] Schorr S, Hoebler H J and Tovar M 2007 Eur. J. Mineral. 19 65
[31] Washio T, Nozaki H, Fukano T, Motohiro T, Jimbo K and Katagiri H 2011 J. Appl. Phys. 110 074511
[32] Wang C C, Chen S Y, Yang J H, Lang L, Xiang H J, Gong X G, Walsh A and Wei S H 2014 Chem. Mater. 26 3411
[33] Zhong G, Tse K, Zhang Y, Li X, Huang L, Yang C, Zhu J, Zeng Z, Zhang Z and Xiao X 2016 Thin Solid Films 603 224
[34] Liu C Y, Zhang Y Y, Hou Y S, Chen S Y, Xiang H J and Gong X G 2016 Phys. Rev. B 93 205426
[35] Xiao Z, Meng W, Li J V and Yan Y 2017 ACS Energy Lett. 2 29
[36] Chen R and Persson C 2017 J. Appl. Phys. 121 203104
[37] Chen S Y, Gong X G, Walsh A and Wei S H 2011 Physics 40 248 (in Chinese)
[38] Zhang L J, Zhang B P, Ge Z H, Han C G, Chen N and Li J F 2013 Intermetallics 36 96
[39] Paier J, Asahi R, Nagoya A and Kresse G 2009 Phys. Rev. B 79 115126
[40] Nakamura S, Maeda T and Wada T 2009 Phys. Status Solidi 6 1261
[41] Zou D, Nie G, Li Y, Xu Y, Lin J, Zheng H and Li J 2015 RSC Adv. 5 24908
[42] Chen S, Walsh A, Yang J H, Gong X G, Sun L, Yang P X, Chu J H and Wei S H 2011 Phys. Rev. B 83 125201
[43] Palsgaard M L N, Crovetto A, Gunst T, Markussen T, Hansen O, Stokbro K and Brandbyge M 2016 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 377-380
[44] Nagoya A, Asahi R and Kresse G 2011 J. Phys.:Condens. Matter 23 404203
[45] Dong Z Y, Li Y F, Yao B, Ding Z H, Yang G, Deng R, Fang X, Wei Z P and Liu L 2014 J. Phys. D:Appl. Phys. 47 075304
[46] Bao W and Ichimura M 2012 Int. J. Photoenergy 2012 619812
[47] Bao W and Ichimura M 2012 Jpn. J. Appl. Phys. 51 10NC31
[48] Yu J L, Zheng Z M, Dong L M, Cheng S Y, Lai Y F, Zheng Q, Zhou H F, Jia H J, Zhang H 2017 Chin. Phys. B 26 046802
[49] Liu H R, Chen S, Zhai Y T, Xiang H J, Gong X G and Wei S H 2012 J. Appl. Phys. 112 093717
[50] Chen S, Gong X G and Wei S H 2007 Phys. Rev. B 75 205209
[51] Guo Q, Ford G M, Yang W C, Walker B C, Stach E A, Hillhouse H W and Agrawal R 2010 J. Am. Chem. Soc. 132 17384
[52] Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510
[53] Dun C, Holzwarth N a W, Li Y, Huang W and Carroll D L 2014 J. Appl. Phys. 115 193513
[54] Dimitrievska M, Xie H, Fairbrother A, Fontané X, Gurieva G, Saucedo E, Pérez-Rodríguez A, Schorr S and Izquierdo-Roca V 2014 Appl. Phys. Lett. 105 031913
[55] Khare A, Himmetoglu B, Cococcioni M and Aydil E S 2012 J. Appl. Phys. 111 123704
[56] Zamulko S, Chen R and Persson C 2017 Phys. Status Solidi 254 1700084
[57] Wei S H, Ferreira L G, Bernard J E and Zunger A 1990 Phys. Rev. B 42 9622
[58] Wei S H and Zunger A 1995 J. Appl. Phys. 78 3846
[59] Zhang S B, Wei S H and Zunger A 1998 J. Appl. Phys. 83 3192
[60] Yuan Z K, Chen S, Xiang H, Gong X G, Walsh A, Park J S, Repins I and Wei S H 2015 Adv. Funct. Mater. 25 6733
[61] Lafond A, Guillot-Deudon C, Vidal J, Paris M, La C and Jobic S 2017 Inorg. Chem. 56 2712
[62] Shibuya T, Goto Y, Kamihara Y, Matoba M, Yasuoka K, Burton L A and Walsh A 2014 Appl. Phys. Lett. 104 021912
[63] Xiao Z Y, Li Y F, Yao B, Deng R, Ding Z H, Wu T, Yang G, Li C R, Dong Z Y, Liu L, Zhang L G and Zhao H F 2013 J. Appl. Phys. 114 183506
[64] Shu Q, Yang J H, Chen S, Huang B, Xiang H, Gong X G and Wei S H 2013 Phys. Rev. B 87 115208
[65] Shen K, Jia G, Zhang X and Jiao Z 2016 Mol. Phys. 114 2948
[66] Guchhait A, Su Z, Tay Y F, Shukla S, Li W, Leow S W, Tan J M R, Lie S, Gunawan O and Wong L H 2016 ACS Energy Lett. 1 1256
[67] Qi Y F, Kou D X, Zhou W H, Zhou Z J, Tian Q W, Meng Y N, Liu X S, Du Z L and Wu S X 2017 Energy Environ. Sci. 10 2401
[68] Contreras M A, Egaas B, Dippo P, Webb J, Granata J, Ramanathan K, Asher S, Swartzlander A and Noufi R 1997 26th IEEE Photovoltaic Specialists Conference, IEEE Anaheim, California, USA, pp. 359-362
[69] Wei S H, Zhang S and Zunger A 1999 J. Appl. Phys. 85 7214
[70] Yuan Z K, Chen S, Xie Y, Park J S, Xiang H, Gong X G and Wei S H 2016 Adv. Energy Mater. 6 1601191
[71] Niles D W, Al-Jassim M and Ramanathan K 1999 J. Vac. Sci. Technol. A 17 291
[72] Maeda T, Kawabata A and Wada T 2015 Phys. Status Solidi C 12 631
[73] Xiao W, Wang J, Zhao X, Wang J, Huang G, Cheng L, Jiang L and Wang L 2015 Sol. Energy 116 125
[74] Hsieh Y T, Han Q, Jiang C, Song T B, Chen H, Meng L, Zhou H and Yang Y 2016 Adv. Energy Mater. 6 1502386
[75] Prabhakar T and Jampana N 2011 Sol. Energy Mater. Sol. Cells 95 1001
[76] Zhou H, Song T B, Hsu W C, Luo S, Ye S, Duan H S, Hsu C J, Yang W and Yang Y 2013 J. Am. Chem. Soc. 135 15998
[77] Nagaoka A, Miyake H, Taniyama T, Kakimoto K, Nose Y, Scarpulla M A and Yoshino K 2014 Appl. Phys. Lett. 104 152101
[78] Tong Z, Yan C, Su Z, Zeng F, Yang J, Li Y, Jiang L, Lai Y and Liu F 2014 Appl. Phys. Lett. 105 223903
[79] Altamura G, Wang M and Choy K L 2016 Sci. Rep. 6 22109
[80] Johnson M, Baryshev S, Thimsen E, Manno M, Zhang X, Veryovkin I, Leighton C and Aydil E 2014 Energy Environ. Sci. 7 1931
[81] Gershon T, Shin B, Bojarczuk N, Hopstaken M, Mitzi D B and Guha S 2015 Adv. Energy Mater. 5 1400849
[82] Yan Y, Al-Jassim M and Jones K 2003 J. Appl. Phys. 94 2976
[83] Li J, Mitzi D B and Shenoy V B 2011 ACS Nano 5 8613
[84] Yin W J, Wu Y, Wei S H, Noufi R, Al-Jassim M M and Yan Y 2014 Adv. Energy Mater. 4 1
[85] Yan Y, Noufi R and Al-Jassim M 2006 Phys. Rev. Lett. 96 205501
[86] Persson C and Zunger A 2003 Phys. Rev. Lett. 91 266401
[87] Kim G Y, Jeong A R, Kim J R, Jo W, Son D H, Kim D H and Kang J K 2014 Sol. Energy Mater. Sol. Cells 127 129
[88] Liu C Y, Li Z M, Gu H Y, Chen S Y, Xiang H and Gong X G 2016 Adv. Energy Mater. 7 1601457
[89] Chen S, Gong X G, Duan C G, Zhu Z Q, Chu J H, Walsh A, Yao Y G, Ma J and Wei S H 2011 Phys. Rev. B 83 245202
[90] Chen S, Gong X, Walsh A and Wei S H 2010 Appl. Phys. Lett. 96 021902
[91] Chen S, Yang J H, Gong X, Walsh A and Wei S H 2010 Phys. Rev. B 81 245204
[92] Chen S, Wang L W, Walsh A, Gong X G and Wei S H 2012 Appl. Phys. Lett. 101 223901
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[9] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!