Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 018803    DOI: 10.1088/1674-1056/27/1/018803
Special Issue: TOPICAL REVIEW — New generation solar cells
TOPICAL REVIEW—New generation solar cells Prev   Next  

Interfaces of high-efficiency kesterite Cu2ZnSnS(e)4 thin film solar cells

Shoushuai Gao(高守帅)1, Zhenwu Jiang(姜振武)1, Li Wu(武莉)2, Jianping Ao(敖建平)1, Yu Zeng(曾玉)1, Yun Sun(孙云)1, Yi Zhang(张毅)1
1 Institute of Photoelectronic Thin Film Devices and Technology, Tianjin Key Laboratory of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300071, China;
2 The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China
Abstract  

Cu2ZnSnS(e)4 (CZTS(e)) solar cells have attracted much attention due to the elemental abundance and the non-toxicity. However, the record efficiency of 12.6% for Cu2ZnSn(S,Se)4 (CZTSSe) solar cells is much lower than that of Cu(In,Ga)Se2 (CIGS) solar cells. One crucial reason is the recombination at interfaces. In recent years, large amount investigations have been done to analyze the interfacial problems and improve the interfacial properties via a variety of methods. This paper gives a review of progresses on interfaces of CZTS(e) solar cells, including:(i) the band alignment optimization at buffer/CZTS(e) interface, (ii) tailoring the thickness of MoS(e)2 interfacial layers between CZTS(e) absorber and Mo back contact, (iii) the passivation of rear interface, (iv) the passivation of front interface, and (v) the etching of secondary phases.

Keywords:  Cu2ZnSnS4 solar cells      kesterite      interface      passivation  
Received:  26 September 2017      Revised:  25 November 2017      Accepted manuscript online: 
PACS:  88.40.H- (Solar cells (photovoltaics))  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  73.40.Cg (Contact resistance, contact potential)  
  88.40.hj (Efficiency and performance of solar cells)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51572132, 51372121, and 61674082), the Natural Science Foundation of Key Project of Tianjin City, China (Grant No. 16JCZDJC30700), the YangFan Innovative and Entrepreneurial Research Team Project of China (Grant No. 2014YT02N037), and 111 Project, China (Grant No. B16027).

Corresponding Authors:  Jianping Ao, Yi Zhang     E-mail:  aojp@nankai.edu.cn;yizhang@nankai.edu.cn

Cite this article: 

Shoushuai Gao(高守帅), Zhenwu Jiang(姜振武), Li Wu(武莉), Jianping Ao(敖建平), Yu Zeng(曾玉), Yun Sun(孙云), Yi Zhang(张毅) Interfaces of high-efficiency kesterite Cu2ZnSnS(e)4 thin film solar cells 2018 Chin. Phys. B 27 018803

[1] Jackson P, Wuerz R, Hariskos D, Lotter E, Witte W and Powalla M 2016 Phys. Status Solidi-Rapid Res. Lett. 10 583
[2] Candelise C, Winskel M and Gross R 2012 Prog. Photovolt: Res. Appl. 20 816
[3] Lu M, Xu J and Huang J W 2016 Chin. Phys. B 25 098402
[4] Mitzi D B, Gunawan O, Todorov T K and Barkhouse D A R 2013 Philos. Trans. R. Soc. A 371 20110432
[5] Bag S, Gunawan O, Gokmen T, Zhu Y, Todorov T K and Mitzi D B 2012 Energy Environ. Sci. 5 7060
[6] Katagiri H, Sasaguchi N, Hando S, Ohashi J and Yokota T 1997 Sol. Energy Mater. Sol. Cells 49 407
[7] Haight R, Barkhouse A, Gunawan O, Shin B, Copel M, Hopstaken M and Mitzi D B 2011 Appl. Phys. Lett. 98 253502
[8] Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y and Mitzi D B 2014 Adv. Energy Mater. 4 1301465
[9] Siebentritt S 2013 Thin Solid Films 535 1
[10] Gunawan O, Todorov T K and Mitzi D B 2010 Appl. Phys. Lett. 97 233506
[11] Nadenau V, Rau U, Jasenek A and Schock H W 2000 J. Appl. Phys. 87 584
[12] Turcu M, Pakma O and Rau U 2002 Appl. Phys. Lett. 80 2598
[13] Scheer R 2009 J. Appl. Phys. 105 104505
[14] Huang T J, Yin X, Qi G and Gong H 2014 Physica Status Solidi-Rapid Res. Lett. 08 735
[15] Minemotoa T, Matsuia T, Takakuraa H, Hamakawaa Y, Negamib T, Hashimotob Y, Uenoyamab T and Kitagawab M 2001 Sol. Energy Mater. Sol. Cells 67 83
[16] Bär M, Schubert B A, Marsen B, Wilks R G, Pookpanratana S, Blum M, Krause S, Unold T, Yang W, Weinhardt L, Heske C and Schock H W 2011 Appl. Phys. Lett. 99 222105
[17] Tajima S, Kataoka K, Takahashi N, Kimoto Y, Fukano T, Hasegawa M and Hazama H 2013 Appl. Phys. Lett. 103 243906
[18] Li J, Du Q, Liu W, Jiang G, Feng X, Zhang W, Zhu J and Zhu C 2012 Electron. Mater. Lett. 8 365
[19] Li J, Wei M, Du Q, Liu W, Jiang G and Zhu C 2013 Surf. Interface Anal. 45 682
[20] Santoni A, Biccari F, Malerba C, Valentini M, Chierchia R and Mittiga A 2013 J. Phys. D: Appl. Phys. 46 175101
[21] Udaka Y, Takaki S i, Isowaki K, Nagai T, Kim K M, Kim S, Tampo H, Shibata H, Matsubara K, Niki S, Sakai N, Kato T, Sugimoto H and Terada N 2017 Phys. Status Solidi C 14 1600178
[22] Bao W and Ichimura M 2012 Jpn J. Appl. Phys. 51 10NC31
[23] Palsgaard M L N, Crovetto A, Gunst T, Markussen T, Hansen O, Stokbro K and Brandbyge M 2016 International Conference on IEEE Simulation of Semiconductor Processes and Devices (SISPAD), September 6-8, 2016, Nuremberg, Germany, p. 377
[24] Kato T, Hiroi H, Sakai N and Sugimoto H 2013 28th European Photovoltaic Solar Energy Conference, September 30, 2013, Paris, France, p. 2125
[25] Neuschitzer M, Sanchez Y, López-Marino S, Xie H, Fairbrother A, Placidi M, Haass S, Izquierdo-Roca V, Perez-Rodriguez A and Saucedo E 2015 Prog. Photovolt: Res. Appl. 23 1660
[26] Chua R H, Li X, Walter T, Teh L K, Hahn T, Hergert F, Mhaisalkar S and Wong L H 2016 Appl. Phys. Lett. 108 043505
[27] Meyer B K, Polity A, Farangis B, He Y, Hasselkamp D, Krämer T and Wang C 2004 Appl. Phys. Lett. 85 4929
[28] Li J, Liu X, Liu W, Wu L, Ge B, Lin S, Gao S, Zhou Z, Liu F, Sun Y, Ao J, Zhu H, Mai Y and Zhang Y 2017 Solar RRL 1 1700075
[29] Kamada R, Yagioka T, Adachi S, Handa A, Tai K F, Kato T and Sugimoto H 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), June, 2016, Portland, OR. USA, p. 5
[30] Barkhouse D A R, Haight R, Sakai N, Hiroi H, Sugimoto H and Mitzi D B 2012 Appl. Phys. Lett. 100 193904
[31] Sharbati S and Sites J R 2014 IEEE Journal of Photovoltaics 4 697
[32] Sharbati S, Keshmiri S H, McGoffin J T and Geisthardt R 2014 Appl. Phys. A 118 1259
[33] Neuschitzer M, Lienau K, Guc M, Barrio L C, Haass S, Prieto J M, Sanchez Y, Espindola-Rodriguez M, Romanyuk Y, Perez-Rodriguez A, Izquierdo-Roca V and Saucedo E 2016 J. Phys. D: Appl. Phys. 49 125602
[34] Grenet L, Grondin P, Coumert K, Karst N, Emieux F, Roux F, Fillon R, Altamura G, Fournier H, Faucherand P and Perraud S 2014 Thin Solid Films 564 375
[35] Sakai N, Hiroi H and Sugimoto H 2011 37th IEEE Photovol. Special. Conf. (PVSC), June 19-24, 2011, Seattle, WA, USA, p. 003654
[36] Hiroi H, Sakai N, Muraoka S, Katou T and Sugimoto H 2012 June 3-8, 2012, Austin, TX, USA, p. 001811
[37] Bao W, Sachuronggui and Qiu F Y 2016 Chin. Phys. B 25 127102
[38] Sun K, Yan C, Liu F, Huang J, Zhou F, Stride J A, Green M and Hao X 2016 Adv. Energy Mater. 6 1600046
[39] Messaoud K B, Buffiére M, Brammertz G, Lenaers N, Boyen H G, Sahayaraj S, Meuris M, Amlouk M and Poortmans J 2017 J. Phys. D: Appl. Phys. 50 285501
[40] Platzer-Björkman C, Frisk C, Larsen J K, Ericson T, Li S Y, Scragg J J S, Keller J, Larsson F and Törndahl T 2015 Appl. Phys. Lett. 107 243904
[41] Ericson T, Larsson F, Törndahl T, Frisk C, Larsen J, Kosyak V, Hgglund C, Li S and Platzer-Björkman C 2017 Solar RRL 1 1700001
[42] Tajima S, Umehara M and Mise T 2016 Jpn. J. Appl. Phys. 55 112302
[43] Hironiwa D, Matsuo N, Sakai N, Katou T, Sugimoto H, Chantana J, Tang Z and Minemoto T 2014 Jpn. J. Appl. Phys. 53 106502
[44] Hironiwa D, Chantana J, Sakai N, Kato T, Sugimoto H and Minemoto T 2015 Curr. Appl Phys. 15 383
[45] Hironiwa D, Matsuo N, Chantana J, Sakai N, Kato T, Sugimoto H and Minemoto T 2015 Phys. Stat. Sol. 212 2766
[46] Sandoval-Paz M G, Sotelo-Lerma M, Valenzuela-Jáuregui J J, Flores-Acosta M and Ramírez-Bon R 2005 Thin Solid Films 472 5
[47] Yan C, Liu F, Song N, Ng B K, Stride J A, Tadich A and Hao X 2014 Appl. Phys. Lett. 104 173901
[48] Yu J, Zheng Z, Dong L, Cheng S, Lai Y, Zheng Q, Zhou H, Jia H and Zhang H 2017 Chin. Phys. B 26 046802
[49] Buffiére M, Barreau N, Brammertz G, Sahayaraj S, Meuris M and Poortmans J 2015 June 14-19, 2015, New Orleans, LA, USA, p. 1
[50] Khadka D B, Kim S and Kim J 2015 J. Phys. Chem. C 119 12226
[51] Kim J, Hiroi H, Todorov T K, Gunawan O, Kuwahara M, Gokmen T, Nair D, Hopstaken M, Shin B, Lee Y S, Wang W, Sugimoto H and Mitzi D B 2014 Adv. Mater. 26 7427
[52] Hiroi H, Sakai N, Kato T and Sugimoto H 2013 June 16-21, 2013, Tampa, FL, USA, p. 0863
[53] Yan C, Liu F, Sun K, Song N, Stride J A, Zhou F, Hao X and Green M 2016 Sol. Energy Mater. Sol. Cells 144 700
[54] Su C Y, Liao K H, Pan C T and Peng P W 2012 Thin Solid Films 520 5936
[55] Li Z H Cho E S and Kwon S J 2011 Appl. Surf. Sci. 257 9682
[56] Pethe S A, Takahashi E, Kaul A and Dhere N G 2012 Sol. Energy Mater. Sol. Cells 100 1
[57] Salomé P M P, Malaquias J, Fernandes P A and Cunha A F d 2010 J. Phys. D: Appl. Phys. 43 345501
[58] Wu H M, Liang S C, Lin Y L, Ni C Y, Bor H Y, Tsai D C and Shieu F S 2012 Vacuum 86 1916
[59] Spies J A, Schafer R, Wager J F, Hersh P, Platt H A S, Keszler D A, Schneider G, Kykyneshi R, Tate J, Liu X, Compaan A D and Shafarman W N 2009 Sol. Energy Mater. Sol. Cells 93 1296
[60] Wada T, Kohara N, Nishiwaki S and Negami T 2001 Thin Solid Films 387 118
[61] Zhang X, Kobayashi M and Yamada A 2017 ACS Appl Mater Interfaces 9 16215
[62] Li J, Zhang Y, Zhao W, Nam D, Cheong H, Wu L, Zhou Z and Sun Y 2015 Adv. Energy Mater. 5 1402178
[63] Scragg J J, Dale P J, Colombara D and Peter L M 2012 Chem. Phys. Chem. 13 3035
[64] Scragg J J, Kubart T, Wätjen J T, Ericson T, Linnarsson M K and Platzer-Björkman C 2013 Chem. Mater. 25 3162
[65] Scragg J J, Watjen J T, Edoff M, Ericson T, Kubart T and Platzer-Bjorkman C 2012 J. Am. Chem. Soc. 134 19330
[66] Shin B, Zhu Y, Bojarczuk N A, Jay Chey S and Guha S 2012 Appl. Phys. Lett. 101 053903
[67] Yao L, Ao J, Jeng M J, Bi J, Gao S, Sun G, He Q, Zhou Z, Sun Y and Chang L B 2017 Sol. Energy Mater. Sol. Cells 159 318
[68] Shin S W, Gurav K V, Hong C W, Gwak J, Choi H R, Vanalakar S A, Yun J H, Lee J Y, Moon J H and Kim J H 2015 Sol. Energy Mater. Sol. Cells 143 480
[69] Shin B, Bojarczuk N A and Guha S 2013 Appl. Phys. Lett. 102 091907
[70] Xiao Z Y, Yao B, Li Y F, Ding Z H, Gao Z M, Zhao H F, Zhang L G, Zhang Z Z, Sui Y R and Wang G 2016 ACS Appl. Mater. Interfaces 8 17334
[71] Liu F, Sun K, Li W, Yan C, Cui H, Jiang L, Hao X and Green M A 2014 Appl. Phys. Lett. 104 051105
[72] Schnabel T and Ahlswede E 2017 Sol. Energy Mater. Sol. Cells 159 290
[73] Duchatelet A, Savidand G, Vannier R N and Lincot D 2013 Thin Solid Films 545 94
[74] Nina K, Kimura Y, Yokoyama K, Kido O, Binyo G and Kaito C 2008 Physica E 40 2995
[75] Werfel F and Minni E 1983 J. Phys. C: Solid State Phys. 16 6091
[76] Lopez-Marino S, Espíndola-Rodríguez M, Sánchez Y, Alcobé X, Oliva F, Xie H, Neuschitzer M, Giraldo S, Placidi M, Caballero R, Izquierdo-Roca V, Pérez-Rodríguez A and Saucedo E 2016 Nano Energy 26 708
[77] Würz R, Fuertes Marrón D, Meeder A, Rumberg A, Babu S M, Schedel-Niedrig T, Bloeck U, Schubert-Bischoff P and Lux-Steiner M C 2003 Thin Solid Films 431 398
[78] López-Marino S, Placidi M, Pérez-Tomás A, Llobet J, Izquierdo-Roca V, Fontané X, Fairbrother A, Espíndola-Rodríguez M, Sylla D, Pérez-Rodríguez A and Saucedo E 2013 J. Mater. Chem. A 1 8338
[79] Li W, Chen J, Cui H, Liu F and Hao X 2014 Mater. Lett. 130 87
[80] Liu X, Cui H, Li W, Song N, Liu F, Conibeer G and Hao X 2014 Phys. Stat. Sol.-Rapid Res. Lett. 8 966
[81] Gao S, Zhang Y, Ao J, Lin S, Zhang Z, Li X, Wang D, Zhou Z, Sun G, Liu F and Sun Y 2017 Sol. Energy Mater. Sol. Cells
[82] Zhao J, Wang A and Green M A 1999 Prog. Photovolt: Res. Appl. 7 471
[83] Saint-Cast P, Benick J, Kania D, Weiss L, Hofmann M, Rentsch J, Preu R and Glunz S W 2010 IEEE Electron Device Lett. 31 695
[84] Martín I, Vetter M, Orpella A, Puigdollers J, Cuevas A and Alcubilla R 2001 Appl. Phys. Lett. 79 2199
[85] Schmidt J, Kerr M and Cuevas A 2001 Semicond. Sci. Technol. 16 164
[86] Dullweber T, Gatz S, Hannebauer H, Falcon T, Hesse R, Schmidt J and Brendel R 2012 Prog. Photovolt: Res. Appl. 20 630
[87] Vermang B, Ren Y, Donzel-Gargand O, Frisk C, Joel J, Salome P, Borme J, Sadewasser S, Platzer-Bjorkman C and Edoff M 2016 IEEE J. Photovolt. 6 332
[88] Kim J, Park S, Ryu S, Oh J and Shin B 2017 Prog. Photovolt: Res. Appl. 25 308
[89] Liu F, Huang J, Sun K, Yan C, Shen Y, Park J, Pu A, Zhou F, Liu X, Stride J A, Green M A and Hao X 2017 NPG Asia Mater. 9 e401
[90] Antunez P D, Bishop D M, Lee Y S, Gokmen T, Gunawan O, Gershon T S, Todorov T K, Singh S and Haight R 2017 Adv. Energy Mater. 7 1602585
[91] Ranjbar S, Brammertz G, Vermang B, Hadipour A, Cong S, Suganuma K, Schnabel T, Meuris M, da Cunha A F and Poortmans J 2017 Phys. Stat. Sol. (a) 214 1600534
[92] Zhou F, Zeng F, Liu X, Liu F, Song N, Yan C, Pu A, Park J, Sun K and Hao X 2015 ACS Appl. Mater. Interfaces 7 22868
[93] Wu W, Cao Y, Caspar J V, Guo Q, Johnson L K, McLean R S, Malajovich I and Choudhury K R 2014 Appl. Phys. Lett. 105 042108
[94] Ranjbar S, Hadipour A, Vermang B, Batuk M, Hadermann J, Garud S, Sahayaraj S, Meuris M, Brammertz G, da Cunha A F and Poortmans J 2017 IEEE J. Photovolt. 7 1130
[95] Lee Y S, Gershon T, Todorov T K, Wang W, Winkler M T, Hopstaken M, Gunawan O and Kim J 2016 Adv. Energy Mater. 6 1600198
[96] Erkan M E, Chawla V and Scarpulla M A 2016 J. Appl. Phys. 119 194504
[97] Liao D and Rockett A 2003 J. Appl. Phys. 93 9380
[98] Liao D and Rockett A 2003 Appl. Phys. Lett. 82 2829
[99] Maeda T, Nakamura S and Wada T 2012 Jpn J. Appl. Phys. 51 10NC11
[100] Liu F, Yan C, Huang J, Sun K, Zhou F, Stride J A, Green M A and Hao X 2016 Adv. Energy Mater. 6 1600706
[101] Crovetto A, Yan C, Iandolo B, Zhou F, Stride J, Schou J, Hao X and Hansen O 2016 Appl. Phys. Lett. 109 233904
[102] Chen S, Walsh A, Gong X G and Wei S H 2013 Adv. Mater. 25 1522
[103] Schlaf R, Pettenkofer C, and Jaegermann W 1999 J. Appl. Phys. 85 6550
[104] Chen S, Walsh A, Yang J H, Gong X G, Sun L, Yang P X, Chu J H and Wei S H 2011 Phys. Rev. B 83 125201
[105] Temgoua S, Bodeux R, Naghavi N and Delbos S 2015 Thin Solid Films 582 215
[106] Vauche L, Risch L, Arasimowicz M, Sánchez Y, Saucedo E, Pasquinelli M, Goislard de Monsabert T, Grand P P and Jaime-Ferrer S 2016 J. Renewable Sustainable Energy 8 033502
[107] Vora N, Blackburn J, Repins I, Beall C, To B, Pankow J, Teeter G, Young M and Noufi R 2012 J. Vac. Sci. Technol. A 30 051201
[108] Schwarz T, Cojocaru-Mirédin O, Choi P, Mousel M, Redinger A, Siebentritt S and Raabe D 2013 Appl. Phys. Lett. 102 042101
[109] Xie H, Dimitrievska M, Fontané X, Sánchez Y, López-Marino S, Izquierdo-Roca V, Bermúdez V, Pérez-Rodríguez A and Saucedo E 2015 Sol. Energy Mater. Sol. Cells 140 289
[110] Timo Wätjen J, Engman J, Edoff M and Platzer-Björkman C 2012 Appl. Phys. Lett. 100 173510
[111] Hsu W C, Repins I, Beall C, DeHart C, Teeter G, To B, Yang Y and Noufi R 2013 Sol. Energy Mater. Sol. Cells 113 160
[112] Nagoya A, Asahi R and Kresse G 2011 J. Phys. Condens. Matt. 23 404203
[113] Abdullaev G B, Aliyarova Z A, and Asadov G A 1967 Phys. Stat. Sol. 21 461
[114] Fuertes Marrón D, Glatzel T, Meeder A, Schedel-Niedrig T, Sadewasser S and Lux-Steiner M C 2004 Appl. Phys. Lett. 85 3755
[115] Hsieh T P, Chuang C C, Wu C S, Chang J C, Guo J W and Chen W C 2011 Solid-State Electron. 56 175
[116] Fairbrother A, Fontané X, Izquierdo-Roca V, Espíndola-Rodríguez M, López-Marino S, Placidi M, Calvo-Barrio L, Pérez-Rodríguez A and Saucedo E 2013 Sol. Energy Mater. Sol. Cells 112 97
[117] Yin X, Tang C, Sun L, Shen Z and Gong H 2014 Chem. Mater. 26 2005
[118] Nam D, Cho S, Sim J H, Yang K J, Son D H, Kim D H, Kang J K, Kwon M S, Jeon C W and Cheong H 2016 Sol. Energy Mater. Sol. Cells 149 226
[119] Tanaka T, Sueishi T, Saito K, Guo Q, Nishio M, Yu K M and Walukiewicz W 2012 J. Appl. Phys. 111 053522
[120] Kim G Y, Kim J R, Jo W, Lee K D, Kim J Y, Nguyen T T T and Yoon S 2014 Curr. Appl Phys. 14 1665
[121] Nguyen T T T, Shin H-Y, Kim G Y, Kim J R, Jo W, Yoon S, Lee K D and Kim J Y 2015 J. Korean Phys. Soc. 66 117
[122] Buffiére M, Brammertz G, Sahayaraj S, Batuk M, Khelifi S, Mangin D, El Mel A A, Arzel L, Hadermann J, Meuris M and Poortmans J 2015 ACS Appl. Mat. Interf. 7 14690
[123] Erkan M E, Chawla V, Repins I and Scarpulla M A 2015 Sol. Energy Mater. Sol. Cells 136 78
[124] Pinto A H, Shin S W, Aydil E S and Penn R L 2016 Green Chem. 18 5814
[125] Chavda A, Patel M, Mukhopadhyay I and Ray A 2016 ACS Sustainable Chem. & Engin. 4 2302
[126] Fairbrother A, Garcia-Hemme E, Izquierdo-Roca V, Fontane X, Pulgarin-Agudelo F A, Vigil-Galan O, Perez-Rodriguez A and Saucedo E 2012 J. Am. Chem. Soc. 134 8018
[127] Mousel M, Redinger A, Djemour R, Arasimowicz M, Valle N, Dale P and Siebentritt S 2013 Thin Solid Films 535 83
[128] López-Marino S, Sánchez Y, Placidi M, Fairbrother A, Espindola-Rodríguez M, Fontané X, Izquierdo-Roca V, López-García J, Calvo-Barrio L, Pérez-Rodríguez A and Saucedo E 2013 Chem.-A Eur. J 19 14814
[129] Xie H, Sánchez Y, López-Marino S, Espíndola-Rodríguez M, Neuschitzer M, Sylla D, Fairbrother A, Izquierdo-Roca V, Pérez-Rodríguez A and Saucedo E 2014 ACS Appl. Mat. Interfaces 6 12744
[130] Buffiére M, Brammertz G, El Mel A A, Barreau N, Meuris M and Poortmans J 2017 Thin Solid Films 633 135
[131] Buffiére M, Mel A A E, Lenaers N, Brammertz G, Zaghi A E, Meuris M and Poortmans J 2015 Adv. Energy Mater. 5 1401689
[132] Wei Z, Newman M J, Tsoi W C and Watson T M 2016 Appl. Phys. Lett. 109 123902
[133] Ren Y, Richter M, Keller J, Redinger A, Unold T, Donzel-Gargand O, Scragg J J S and Platzer Björkman C 2017 ACS Energy Lett. 2 976
[134] Timmo K, Altosaar M, Raudoja J, Grossberg M, Danilson M, Volobujeva O and Mellikov E 2010 35$th IEEE Photovoltaic Specialists Conference (PVSC), June 20-25, 2010, Honolulu, HI, USA, p. 001982
[135] Lee Y S, Gershon T, Gunawan O, Todorov T K, Gokmen T, Virgus Y and Guha S 2015 Adv. Energy Mater. 5 1401372
[136] Tajima S, Umehara M, Hasegawa M, Mise T and Itoh T 2017 Prog. Photovolt: Res. Appl. 25 14
[1] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[2] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[3] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[4] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[5] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[6] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[7] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[8] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[9] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[10] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[11] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[12] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[13] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[14] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[15] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
No Suggested Reading articles found!