Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 018802    DOI: 10.1088/1674-1056/27/1/018802
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A compact and high-power silicon-wafer solar strip-cells-array module integrated with an array concentrator

Jie Lin(林洁), Mengxia Chen(陈梦霞), Yongqi Ke(柯永琦), Caiying Ren(任彩莹), Zesheng Xu(徐泽升), Yaoju Zhang(张耀举), Chaolong Fang(方朝龙)
College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China
Abstract  

A compact, low-cost and high-output-power silicon-wafer solar strip-cells-array module (SCAM) was experimentally demonstrated. The proposed SCAM consisted mainly of a silicon-wafer strip-cell sparse array and low-concentration-ratio array concentrator based on an epoxy resin polymer (ERP) cylindrical plano-convex lens. A polymer replication process based on a polydimethylsiloxane mold was used to fabricate the ERP lens array concentrator. The results show that 46.94% of the silicon-wafer cell was saved in the designed SCAM. Moreover, the output power of the SCAM with a low concentration ratio of 8 suns was improved by 8.6%, compared with a whole piece of a conventional silicon-wafer solar cell with the same area as the module. The proposed method encapsulating solar cells provides a means to reduce the usage of silicon cells in modules as well as improving the output power of modules.

Keywords:  epoxy resin polymer lens      strip-cell array      low concentration ratio  
Received:  02 August 2017      Revised:  05 September 2017      Accepted manuscript online: 
PACS:  88.40.fc (Modeling and analysis)  
  88.40.H- (Solar cells (photovoltaics))  
  88.40.jj (Silicon solar cells)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61377021 and 61671329).

Corresponding Authors:  Yaoju Zhang, Chaolong Fang     E-mail:  zhangyj@wzu.edu.cn;fansy21@163.com

Cite this article: 

Jie Lin(林洁), Mengxia Chen(陈梦霞), Yongqi Ke(柯永琦), Caiying Ren(任彩莹), Zesheng Xu(徐泽升), Yaoju Zhang(张耀举), Chaolong Fang(方朝龙) A compact and high-power silicon-wafer solar strip-cells-array module integrated with an array concentrator 2018 Chin. Phys. B 27 018802

[1] Muñoz E, Vidal P G, Nofuentes G, et al. 2010 Renewable Sustainable Energy Rev. 14 518
[2] Zahedi A 2011 Renewable Sustainable Energy Rev. 15 1609
[3] Chen N F 2012 Chin. Phys. B 21 283
[4] Li Z, Boehm R F, Wang Y, et al. 2011 Sol. Energy Mater. Sol. Cells 95 538
[5] Paternoster G, Zanuccoli M, Bellutti P, et al. 2015 Sol. Energy Mater. Sol. Cells 134 407
[6] Han X, Xu C, Ju X, et al. 2017 Science Bulletin. Sol. Cells 161 305
[7] Price J S, Sheng X, Meulblok B M, et al. 2015 Nat. Commun. 6 6223
[8] Andreev V M, Grilikhes V A, Khvostikov V P, et al. 2004 Sol. Energy Mater. Sol. Cells 84 3
[9] Royne A, Dey C J and Mills D R 2005 Sol. Energy Mater. Sol. Cells 86 451
[10] Trupke T, Green M A and Wurfel P 2002 J. Appl. Phys. 92 4117
[11] Asim N, Sopian K, Ahmadi S, et al. 2012 Renewable Sustainable Energy Rev. 16 5834
[12] Garboushian V, Roubideaux D and Yoon S 1997 Sol. Energy Mater. Sol. Cells 47 315
[13] Meng X L, Sellami N, Knox A R, et al. 2016 Energy Convers. Manage 114 142
[14] Sabry M, Lund H and Kaiser M J 2016 Energy 107 473
[15] Schuetz M A, Shell K A, Brown S A, et al. 2012 IEEE J. Photovolt. 2 382
[16] Yadav P, Tripathi B, Lokhande M, et al. 2013 Sol. Energy Mater. Sol. Cells 112 65
[17] Li M, Xu J, Li G, et al. 2011 Appl. Energy 88 3218
[18] Hatwaambo S, Hakansson H, Nilsson J, et al. 2008 Sol. Energy Mater. Sol. Cells 92 1347
[19] Ha S H, Yu H W, Jang N S, et al. 2016 Sol. Energy Mater Sol. Cells 155 362
[20] Tseng J K, Chen Y J, Pan C T, et al. 2011 Sol. Energy 85 2167
[21] Raut H K, Dinachali S S, Loke Y C, et al. 2015 ACS. Nano 9 1305
[22] Leem J W, Guan X Y, Choi M, et al. 2015 Sol. Energy Mater. Sol. Cells 134 45
[23] Sadewasser S, Salomé P M P and Rodriguez-Alvarez H 2017 Sol. Energy Mater. Sol. Cells 159 496
[24] Powell D M, Winkler M T, Choi H J, et al. 2012 Energy Environ. Sci. 5 5874
[25] Branker K, Pathak M J M and Pearce J M 2011 Renewable Sustainable Energy Rev. 15 4470
[26] Kannan N and Vakeesan D 2016 Renewable Sustainable Energy Rev. 62 1092
[27] Yoon J, Baca A J, Park S I, et al. 2008 Nat. Mater. 7 907
[28] Sánchez-Illescas P J, Carpena P, Bernaola-Galván P, et al. 2008 Sol. Energy Mater. Sol. Cells 92 323
[29] Zhong S, Huang Z, Lin X, et al. 2015 Adv. Mater. 27 555
[30] Shi D, Zeng Y and Shen W 2015 Sci. Rep. 5 16504
[31] Fan H B and Yuen M M F 2007 Polymer 48 2174
[1] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[2] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[3] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[4] Analysis of highly efficient perovskite solar cells with inorganic hole transport material
I Kabir, S A Mahmood. Chin. Phys. B, 2019, 28(12): 128801.
[5] Effect of carrier mobility on performance of perovskite solar cells
Yi-Fan Gu(顾一帆), Hui-Jing Du(杜会静), Nan-Nan Li(李楠楠), Lei Yang(杨蕾), Chun-Yu Zhou(周春宇). Chin. Phys. B, 2019, 28(4): 048802.
[6] Nonlinear fast-slow dynamics of a coupled fractional order hydropower generation system
Xiang Gao(高翔), Diyi Chen(陈帝伊), Hao Zhang(张浩), Beibei Xu(许贝贝), Xiangyu Wang(王翔宇). Chin. Phys. B, 2018, 27(12): 128202.
[7] Efficient design of perovskite solar cell using mixed halide and copper oxide
Navneet kour, Rajesh Mehra, Chandni. Chin. Phys. B, 2018, 27(1): 018801.
[8] Bursting oscillations in a hydro-turbine governing system with two time scales
Qing-Shuang Han(韩青爽), Di-Yi Chen(陈帝伊), Hao Zhang(张浩). Chin. Phys. B, 2017, 26(12): 128202.
[9] Improvement in IBC-silicon solar cell performance by insertion of highly doped crystalline layer at heterojunction interfaces
Hadi Bashiri, Mohammad Azim Karami, Shahramm Mohammadnejad. Chin. Phys. B, 2017, 26(10): 108801.
[10] Influence of interface states, conduction band offset, and front contact on the performance of a-SiC: H(n)/c-Si(p) heterojunction solar cells
Zhi Qiao(乔治), Jian-Li Ji(冀建利), Yan-Li Zhang(张彦立), Hu Liu(刘虎), Tong-Kai Li(李同锴). Chin. Phys. B, 2017, 26(6): 068802.
[11] Simulation design of P-I-N-type all-perovskite solar cells with high efficiency
Hui-Jing Du(杜会静), Wei-Chao Wang(王韦超), Yi-Fan Gu(顾一帆). Chin. Phys. B, 2017, 26(2): 028803.
[12] Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency
Hui-Jing Du(杜会静), Wei-Chao Wang(王韦超), Jian-Zhuo Zhu(朱键卓). Chin. Phys. B, 2016, 25(10): 108802.
[13] Charge recombination mechanism to explain the negative capacitance in dye-sensitized solar cells
Lie-Feng Feng(冯列峰), Kun Zhao(赵昆), Hai-Tao Dai(戴海涛), Shu-Guo Wang(王树国), Xiao-Wei Sun(孙小卫). Chin. Phys. B, 2016, 25(3): 037307.
[14] Analysis of the interdigitated back contact solar cells: The n-type substrate lifetime and wafer thickness
Zhang Wei (张巍), Chen Chen (陈晨), Jia Rui (贾锐), Sun Yun (孙昀), Xing Zhao (邢钊), Jin Zhi (金智), Liu Xin-Yu (刘新宇), Liu Xiao-Wen (刘晓文). Chin. Phys. B, 2015, 24(10): 108801.
[15] Analysis of each branch current of serial solar cells by using an equivalent circuit model
Yi Shi-Guang (易施光), Zhang Wan-Hui (张万辉), Ai Bin (艾斌), Song Jing-Wei (宋经纬), Shen Hui (沈辉). Chin. Phys. B, 2014, 23(2): 028801.
No Suggested Reading articles found!