Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 097503    DOI: 10.1088/1674-1056/26/9/097503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic properties of AlN monolayer doped with group 1A or 2A nonmagnetic element: First-principles study

Ruilin Han(韩瑞林)1, Xiaoyang Chen(陈晓阳)1, Yu Yan(闫羽)2
1 College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China;
2 Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Department of Physics, Jilin University, Changchun 130012, China
Abstract  The electronic structure, magnetic properties, and mechanism of magnetization in two-dimensional (2D) aluminum nitride (AlN) monolayer doped with nonmagnetic elements of group 1A (Li, Na, K) or group 2A (Be, Mg, Ca) were systematically investigated using first-principles studies. Numerical results reveal that the total magnetic moments produced by group 1A and group 2A nonmagnetic doping are 2.0μB and 1.0μB per supercell, respectively. The local magnetic moments of the three N atoms around the doping atom are the primary moment contributors for all these doped AlN monolayers. The p orbital of the dopant atom contributes little to the total magnetic moment, but it influences adjacent atoms significantly, changing their density of states distribution, which results in hybridization among the p orbitals of the three closest N atoms, giving rise to magnetism. Moreover, the doped AlN monolayer, having half-metal characteristics, is a likely candidate for spintronic applications. When two group 1A or group 2A atoms are inserted, their moments are long-range ferromagnetically coupled. Remarkably, the energy of formation shows that, if the monolayer has been grown under N-rich conditions, substitution of a group 2A atom at an Al site is easier than substitution of a group 1A atom.
Keywords:  AlN nanosheets      ferromagnetism      first-principles      doping  
Received:  26 April 2017      Revised:  16 June 2017      Accepted manuscript online: 
PACS:  75.50.Gg (Ferrimagnetics)  
  75.50.Pp (Magnetic semiconductors)  
  75.75.Lf (Electronic structure of magnetic nanoparticles)  
Fund: Project supported by the National Fundamental Fund of Personnel Training, China (Grant No. J1103210).
Corresponding Authors:  Ruilin Han     E-mail:  hanruilin0116@sxu.edu.cn

Cite this article: 

Ruilin Han(韩瑞林), Xiaoyang Chen(陈晓阳), Yu Yan(闫羽) Magnetic properties of AlN monolayer doped with group 1A or 2A nonmagnetic element: First-principles study 2017 Chin. Phys. B 26 097503

[1] Wei R, Hu J, Zhou T, Zhou X, Liu J and Li J 2014 Acta Mater. 66 163
[2] Chen P, Su Y, Liu H and Wang Y 2013 ACS Appl. Mater. Interfaces 5 12073
[3] Dai J and Zeng X C 2015 Angew. Chem. Int. Ed. 54 7572
[4] Iyikanat F, Sahin H, Senger R T and Peeters F M 2015 J. Phys. Chem. C 119 10709
[5] Peng X Y and Ahuja R 2009 Appl. Phys. Lett. 94 102504
[6] Tsipas P, Kassavetis S, Tsoutsou D, Xenogiannopoulou E, Golias E, Giamini S A, Grazianetti C, Chiappe D, Molle A, Fanciulli M and Di-moulas A 2013 Appl. Phys. Lett. 103 251605
[7] Chen Z P, He J J, Zhou P, Na J and Sun L Z 2015 Comput. Mater. Sci. 110 102
[8] Andriotis A N and Menon M 2014 Phys. Rev. B 90 125304
[9] Zhao X, Dai X Q, Xia C X, Wang T X and Peng Y T 2015 Solid State Commun. 215-216 1
[10] Ma Y D, Dai Y, Guo M, Niu C W, Lu J B and Huang B B 2011 Phys. Chem. Chem. Phys. 13 15546
[11] Zhao X, Xia C X, Wang T X, Peng Y T and Dai X Q 2015 J. Alloys Compd. 649 357
[12] Zhang H, Fan X L, Yang Y and Xiao P 2015 J. Alloys Compd. 635 307
[13] Liu P, Sarkar A D and Ahuja R 2014 Comput. Mater. Sci. 86 206
[14] Valedbagi S, Fathalian A and Elahi S M 2013 Opt. Commun. 309 153
[15] He H, Huang L, Xiao M, Fu Y, Shen X and Zeng J 2013 J. Mater. Sci.: Mater. Electron. 24 4499
[16] Peng Y T, Xia C X, Zhang H, Wang T X, Wei S Y and Jia Y 2014 J. Appl. Phys. 116 044306
[17] Shi C M, Qin H W, Zhang Y J, Hu J F and Ju L 2014 J. Appl. Phys. 115 053907
[18] Fan S W, Li W B, Huang X N, Li Z B and Pan L Q 2015 Appl. Phys. Express 8 045802
[19] Bai Y J, Deng K M and Kan E J 2015 RSC Adv. 5 18352
[20] Xiong J, Guo P, Guo F, Sun X and Gu H 2014 Mater. Lett. 117 276
[21] Zhang C W 2012 J. Appl. Phys. 111 043702
[22] Zhang W X, Li T, Gong S B, He C and Duan L 2015 Phys. Chem. Chem. Phys. 17 10919
[23] He H, Huang L, Xiao M, Fu Y, Shen X and Zeng J 2013 J. Mater. Sci.: Mater. Electron. 24 4499
[24] Shi C M, Qin H W, Zhang Y J, Hu J F and Ju L 2014 J. Appl. Phys. 115 053907
[25] Ney A, Ollefs K, Ye S, Kammermeier T, Ney V, Kaspar T C, Chambers S A, Wilhelm F and Rogalev A 2008 Phys. Rev. Lett. 100 157201
[26] Kaspar T C, Droubay T, Heald S N, Nachimuthu P, Wang C M, Shutthanandan V, Johnson C A, Gamelin D R and Chambers S A 2008 New J. Phys. 10 055010
[27] Fan S W, Li W B, Huang X N, Li Z B and Pan L Q 2015 Appl. Phys. Express 8 045802
[28] Bai Y J, Deng K M and Kan E J 2015 RSC Adv. 5 18352
[29] Ji X H, Lau S P, Yu S F, Yang H Y, Herng T S and Chen J S 2007 Nanotechnology 18 105601
[30] Li H, Chen X L, Song B, Bao H Q and Wang W J 2011 Solid State Commun. 151 499
[31] Jiang L B, Liu Y, Zuo S B and Wang W J 2015 Chin. Phys. B 24 027503
[32] Yan Z, Wu H L, Zheng R S and Xu B S 2015 Materials Research Innovations 19 S5-366
[33] Wu Z G, Zhang W B, Hu H R, Zuo S Y, Wang F Y, Yan P X, Wang J, Zhuo R F and Yan D 2014 Mater. Lett. 136 95
[34] Han R L, Jiang S M and Yan Y 2017 Chin. Phys. B 26 027502
[35] Kresse G and J. Furthmüller 1996 Phys. Rev. B 54 11169
[36] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett 77 3865
[38] Blöchl P E 1994 Phys. Rev. B 50 17953
[39] Heyd J, Scuseria G E and Ernzerhof M 2006 J. Chem. Phys. 124 219906
[40] Sahin H, Cahangirov S, Topsakal M, et al. 2009 Phys. Rev. B 80 155453
[41] Li S S, Zhang C W, Zhang R W, Li P, Li F, Yuan M, Ren M J, Ji W X and Wang P J 2014 RSC Adv. 4 7500
[42] Zhang C W and Wang P J 2011 Phys. Lett. A 375 3583
[43] Bacaksiz C, Sahin H, Ozaydin H D, et al. 2015 Phys. Rev. B 91 085430
[44] Guo H Y, Zhao Y, et al. 2012 J. Phys. Chem. C 116 11336
[45] Zhou J, Wang Q, Sun Q and Jena P 2010 Phys. Rev. B 81 085442
[46] Shen L, Wu R Q, Pan H, Peng G W, Yang M, Sha Z D and Feng Y P 2008 Phys. Rev. B 78 073306
[47] Long R and English N J 2009 Phys. Rev. B 80 115212
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[11] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[12] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[13] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[14] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[15] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
No Suggested Reading articles found!