CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetic properties of AlN monolayer doped with group 1A or 2A nonmagnetic element: First-principles study |
Ruilin Han(韩瑞林)1, Xiaoyang Chen(陈晓阳)1, Yu Yan(闫羽)2 |
1 College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China; 2 Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Department of Physics, Jilin University, Changchun 130012, China |
|
|
Abstract The electronic structure, magnetic properties, and mechanism of magnetization in two-dimensional (2D) aluminum nitride (AlN) monolayer doped with nonmagnetic elements of group 1A (Li, Na, K) or group 2A (Be, Mg, Ca) were systematically investigated using first-principles studies. Numerical results reveal that the total magnetic moments produced by group 1A and group 2A nonmagnetic doping are 2.0μB and 1.0μB per supercell, respectively. The local magnetic moments of the three N atoms around the doping atom are the primary moment contributors for all these doped AlN monolayers. The p orbital of the dopant atom contributes little to the total magnetic moment, but it influences adjacent atoms significantly, changing their density of states distribution, which results in hybridization among the p orbitals of the three closest N atoms, giving rise to magnetism. Moreover, the doped AlN monolayer, having half-metal characteristics, is a likely candidate for spintronic applications. When two group 1A or group 2A atoms are inserted, their moments are long-range ferromagnetically coupled. Remarkably, the energy of formation shows that, if the monolayer has been grown under N-rich conditions, substitution of a group 2A atom at an Al site is easier than substitution of a group 1A atom.
|
Received: 26 April 2017
Revised: 16 June 2017
Accepted manuscript online:
|
PACS:
|
75.50.Gg
|
(Ferrimagnetics)
|
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
75.75.Lf
|
(Electronic structure of magnetic nanoparticles)
|
|
Fund: Project supported by the National Fundamental Fund of Personnel Training, China (Grant No. J1103210). |
Corresponding Authors:
Ruilin Han
E-mail: hanruilin0116@sxu.edu.cn
|
Cite this article:
Ruilin Han(韩瑞林), Xiaoyang Chen(陈晓阳), Yu Yan(闫羽) Magnetic properties of AlN monolayer doped with group 1A or 2A nonmagnetic element: First-principles study 2017 Chin. Phys. B 26 097503
|
[1] |
Wei R, Hu J, Zhou T, Zhou X, Liu J and Li J 2014 Acta Mater. 66 163
|
[2] |
Chen P, Su Y, Liu H and Wang Y 2013 ACS Appl. Mater. Interfaces 5 12073
|
[3] |
Dai J and Zeng X C 2015 Angew. Chem. Int. Ed. 54 7572
|
[4] |
Iyikanat F, Sahin H, Senger R T and Peeters F M 2015 J. Phys. Chem. C 119 10709
|
[5] |
Peng X Y and Ahuja R 2009 Appl. Phys. Lett. 94 102504
|
[6] |
Tsipas P, Kassavetis S, Tsoutsou D, Xenogiannopoulou E, Golias E, Giamini S A, Grazianetti C, Chiappe D, Molle A, Fanciulli M and Di-moulas A 2013 Appl. Phys. Lett. 103 251605
|
[7] |
Chen Z P, He J J, Zhou P, Na J and Sun L Z 2015 Comput. Mater. Sci. 110 102
|
[8] |
Andriotis A N and Menon M 2014 Phys. Rev. B 90 125304
|
[9] |
Zhao X, Dai X Q, Xia C X, Wang T X and Peng Y T 2015 Solid State Commun. 215-216 1
|
[10] |
Ma Y D, Dai Y, Guo M, Niu C W, Lu J B and Huang B B 2011 Phys. Chem. Chem. Phys. 13 15546
|
[11] |
Zhao X, Xia C X, Wang T X, Peng Y T and Dai X Q 2015 J. Alloys Compd. 649 357
|
[12] |
Zhang H, Fan X L, Yang Y and Xiao P 2015 J. Alloys Compd. 635 307
|
[13] |
Liu P, Sarkar A D and Ahuja R 2014 Comput. Mater. Sci. 86 206
|
[14] |
Valedbagi S, Fathalian A and Elahi S M 2013 Opt. Commun. 309 153
|
[15] |
He H, Huang L, Xiao M, Fu Y, Shen X and Zeng J 2013 J. Mater. Sci.: Mater. Electron. 24 4499
|
[16] |
Peng Y T, Xia C X, Zhang H, Wang T X, Wei S Y and Jia Y 2014 J. Appl. Phys. 116 044306
|
[17] |
Shi C M, Qin H W, Zhang Y J, Hu J F and Ju L 2014 J. Appl. Phys. 115 053907
|
[18] |
Fan S W, Li W B, Huang X N, Li Z B and Pan L Q 2015 Appl. Phys. Express 8 045802
|
[19] |
Bai Y J, Deng K M and Kan E J 2015 RSC Adv. 5 18352
|
[20] |
Xiong J, Guo P, Guo F, Sun X and Gu H 2014 Mater. Lett. 117 276
|
[21] |
Zhang C W 2012 J. Appl. Phys. 111 043702
|
[22] |
Zhang W X, Li T, Gong S B, He C and Duan L 2015 Phys. Chem. Chem. Phys. 17 10919
|
[23] |
He H, Huang L, Xiao M, Fu Y, Shen X and Zeng J 2013 J. Mater. Sci.: Mater. Electron. 24 4499
|
[24] |
Shi C M, Qin H W, Zhang Y J, Hu J F and Ju L 2014 J. Appl. Phys. 115 053907
|
[25] |
Ney A, Ollefs K, Ye S, Kammermeier T, Ney V, Kaspar T C, Chambers S A, Wilhelm F and Rogalev A 2008 Phys. Rev. Lett. 100 157201
|
[26] |
Kaspar T C, Droubay T, Heald S N, Nachimuthu P, Wang C M, Shutthanandan V, Johnson C A, Gamelin D R and Chambers S A 2008 New J. Phys. 10 055010
|
[27] |
Fan S W, Li W B, Huang X N, Li Z B and Pan L Q 2015 Appl. Phys. Express 8 045802
|
[28] |
Bai Y J, Deng K M and Kan E J 2015 RSC Adv. 5 18352
|
[29] |
Ji X H, Lau S P, Yu S F, Yang H Y, Herng T S and Chen J S 2007 Nanotechnology 18 105601
|
[30] |
Li H, Chen X L, Song B, Bao H Q and Wang W J 2011 Solid State Commun. 151 499
|
[31] |
Jiang L B, Liu Y, Zuo S B and Wang W J 2015 Chin. Phys. B 24 027503
|
[32] |
Yan Z, Wu H L, Zheng R S and Xu B S 2015 Materials Research Innovations 19 S5-366
|
[33] |
Wu Z G, Zhang W B, Hu H R, Zuo S Y, Wang F Y, Yan P X, Wang J, Zhuo R F and Yan D 2014 Mater. Lett. 136 95
|
[34] |
Han R L, Jiang S M and Yan Y 2017 Chin. Phys. B 26 027502
|
[35] |
Kresse G and J. Furthmüller 1996 Phys. Rev. B 54 11169
|
[36] |
Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
|
[37] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett 77 3865
|
[38] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[39] |
Heyd J, Scuseria G E and Ernzerhof M 2006 J. Chem. Phys. 124 219906
|
[40] |
Sahin H, Cahangirov S, Topsakal M, et al. 2009 Phys. Rev. B 80 155453
|
[41] |
Li S S, Zhang C W, Zhang R W, Li P, Li F, Yuan M, Ren M J, Ji W X and Wang P J 2014 RSC Adv. 4 7500
|
[42] |
Zhang C W and Wang P J 2011 Phys. Lett. A 375 3583
|
[43] |
Bacaksiz C, Sahin H, Ozaydin H D, et al. 2015 Phys. Rev. B 91 085430
|
[44] |
Guo H Y, Zhao Y, et al. 2012 J. Phys. Chem. C 116 11336
|
[45] |
Zhou J, Wang Q, Sun Q and Jena P 2010 Phys. Rev. B 81 085442
|
[46] |
Shen L, Wu R Q, Pan H, Peng G W, Yang M, Sha Z D and Feng Y P 2008 Phys. Rev. B 78 073306
|
[47] |
Long R and English N J 2009 Phys. Rev. B 80 115212
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|