Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 087303    DOI: 10.1088/1674-1056/26/8/087303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optical anisotropy and the direction of polarization of exciton emissions in a semiconductor quantum dot:Effect of heavy- and light-hole mixing

Ranber Singh1, Rajiv Kumar2, Vikramjeet Singh3
1 Department of Physics, Sri Guru Gobind Singh College, Sector 26, Chandigarh 160019, India;
2 Department of Physics, DAV University Jalandhar, Punjab 144012, India;
3 IKGPTU Campus, Hoshiarpur, Punjab 146001, India
Abstract  

The dependence of the directions of polarization of exciton emissions, fine structure splittings (FSS), and polarization anisotropy on the light- and heavy-hole (LH-HH) mixing in semiconductor quantum dots (QDs) is investigated using a mesoscopic model. In general, all QDs have a four-fold exciton ground state. Two exciton states have directions of polarization in the growth-plane, while the other two are along the growth direction of the QD. The LH-HH mixing does affect the FSS and polarization anisotropy of bright exciton states in the growth-plane in the low symmetry QDs (e.g., C2V, CS, C1), while it has no effect on the FSS and polarization anisotropy in high symmetry QDs (e.g., C3V, D2d). When the hole ground state is pure HH or LH, the bright exciton states in the growth-plane are normal to each other. The LH-HH mixing affects the relative intensities and directions of bright exciton states in the growth-plane of the QD. The polarization anisotropy of exciton emissions in the growth-plane of the QD is independent of the phase angle of LH-HH mixing but strongly depends on the magnitude of LH-HH mixing in low symmetry QDs.

Keywords:  light-heavy hole mixing      excitons      quantum dots  
Received:  19 February 2017      Revised:  01 April 2017      Accepted manuscript online: 
PACS:  73.21.La (Quantum dots)  
  78.67.Hc (Quantum dots)  
Corresponding Authors:  Ranber Singh     E-mail:  ranber14@gmail.com
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Ranber Singh, Rajiv Kumar, Vikramjeet Singh Optical anisotropy and the direction of polarization of exciton emissions in a semiconductor quantum dot:Effect of heavy- and light-hole mixing 2017 Chin. Phys. B 26 087303

[1] Bastard G January 1992 Wave mechanics applied to semiconductor heterostructures (EDP Sciences)
[2] Narvaez G A, Bester G and Zunger A 2005 Phys. Rev. B 72 041307
[3] Narvaez G A, Bester G, Franceschetti A and Zunger A 2006 Phys. Rev. B 74 205422
[4] Bester G, Nair S and Zunger A 2003 Phys. Rev. B 67 161306
[5] Seguin R, Schliwa A, Rodt S, Potschke K, Pohl U W and Bimberg D 2005 Phys. Rev. Lett. 95 257402
[6] Bayer M, Ortner G, Forchel A, Hawrylak P and Fafard S 2002 Physica E 13 123
[7] Högele A, Seidl S, Kroner M, Karrai K, Warburton R J, Gerardot B D and Petroff P M 2004 Phys. Rev. Lett. 93 217401
[8] Langbein W, Borri P, Woggon U, Stavarache V, Reuter D and Wieck A D 2004 Phys. Rev. B 69 161301
[9] Abbarchi M, Mastrandrea C A, Kuroda T, Mano T, Sakoda K, Koguchi N, Sanguinetti S, Vinattieri A and Gurioli M 2008 Phys. Rev. B 78 125321
[10] Plumhof J D, Křápek V, Wang L, Schliwa A, Bimberg D, Rastelli A and Schmidt O G 2010 Phys. Rev. B 81 121309
[11] Finley J J, Mowbray D J, Skolnick M S, Ashmore A D, Baker C, Monte A F G and Hopkinson M 2002 Phys. Rev. B 66 153316
[12] Singh R and Bester G 2009 Phys. Rev. Lett. 103 063601
[13] Singh R and Bester G 2010 Phys. Rev. Lett. 104 196803
[14] Favero I, Cassabois G, Jankovic A, Ferreira R, Darson D, Voisin C, Delalande C, Roussignol P, Badolato A, Petroff P M and Gérard J M 2005 Appl. Phys. Lett. 86 041904
[15] Benson O, Santori C, Pelton M and Yamamoto Y 2000 Phys. Rev. Lett. 84 2513
[16] Unitt D C, Bennett A J, Atkinson P, Cooper K, See P, Gevaux D, Ward M B, Stevenson R M, Ritchie D A and Shields A J 2005 J. Opt. B: Quantum Semiclass. Opt. 7 S129
[17] Dupertuis M A, Karlsson K F, Oberli D Y, Pelucchi E, Rudra A, Holtz P O and Kapon E 2011 Phys. Rev. Lett. 107 127403
[18] Smoleński T, Kazimierczuk T, Goryca M, Jakubczyk T, K lopotowski L, Cywiński L, Wojnar P, Golnik A and Kossacki P 2012 Phys. Rev. B 86 241305
[19] Korkusinski M and Hawrylak P 2013 Phys. Rev. B 87 115310
[20] Wang L W, Williamson A J, Zunger A, Jiang H and Singh J 2000 Appl. Phys. Lett. 76 339
[21] Fu H, Wang L W and Zunger A 1997 Appl. Phys. Lett. 71 3433
[22] Niquet Y M, Delerue C, Allan G and Lannoo M 2000 Phys. Rev. B 62 5109
[23] Knyazev A V 2001 SIAM J. Sci. Comput. 23 517
[24] Fu H and Zunger A 1997 Phys. Rev. B 55 1642
[25] Bester G 2009 J. Phys.: Condens. Matter 21 023202
[26] van Kesteren H W, Cosman E C, van der Poel W A J A and Foxon C T 1990 Phys. Rev. B 41 5283
[27] Kulakovskii V, Weigand R, Bacher G, Seufert J, Kümmel T, Forchel A, Leonardi K and Hommel D 2000 Phys. Status Solidi A 178 323
[28] Gourdon C and Lavallard P 1992 Phys. Rev. B 46 4644
[29] Belhadj T, Amand T, Kunold A, Simon C M, Kuroda T, Abbarchi M, Mano T, Sakoda K, Kunz S, Marie X and Urbaszek B 2010 Appl. Phys. Lett. 97 051111
[30] Singh R and Bester G 2013 Phys. Rev. B 88 075430
[31] Schliwa A, Winkelnkemper M, Lochmann A, Stock E and Bimberg D 2009 Phys. Rev. B 80 161307
[32] Karlsson K F, Dupertuis M A, Oberli D Y, Pelucchi E, Rudra A, Holtz P O and Kapon E 2010 Phys. Rev. B 81 161307
[33] Yu P Y and Cardona M May 1999 Fundamentals of Semiconductors, 2nd edn. (Berlin and Heidelberg: Springer-Verlag)
[34] Ohno S, Adachi S, Kaji R, Muto S and Sasakura H 2011 Appl. Phys. Lett. 98 161912
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[5] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[6] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[7] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[8] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[9] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[10] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[11] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[12] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[13] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[14] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[15] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
No Suggested Reading articles found!