State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electron Science and Technology of China (UESTC), Chengdu 610054, China
Yellow organic light-emitting devices (YOLEDs) with a novel structure of ITO/MoO3(5 nm)/NPB(40 nm)/TCTA(15 nm)/CBP:(tbt)2Ir(acac)(x%)(25 nm)/FIrpic(y nm)/TPBi(35 nm)/Mg:Ag are fabricated. The ultrathin blue phosphorescent bis[(4,6-difluorophenyl)-pyridi-nato-N,C2\prime ](picolinate) iridium (III) (FIrpic) layer is regarded as a high-performance modification layer. By adjusting the thickness of FIrpic and the concentration of (tbt)2Ir(acac), a YOLED achieves a high luminance of 41618 cd/m2, power efficiency of 49.7 lm/W, current efficiency of 67.3 cd/A, external quantum efficiency (EQE) of 18%, and a low efficiency roll-off at high luminance. The results show that phosphorescent material of FIrpic plays a significant role in improving YOLED performance. The ultrathin FIrpic modification layer blocks excitons in EML. In the meantime, the high triplet energy of FIrpic (2.75 eV) alleviates the exciton energy transport from EML to FIrpic.
Project supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 61675041 and 61605253), the Foundation for Innovation Research Groups of the NSFC (Grant No. 61421002), and the Fund from the Science & Technology Department of Sichuan Province, China (Grant No. 2016HH0027).
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.