INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Anomalous temperature dependence of photoluminescence spectra from InAs/GaAs quantum dots grown by formation-dissolution-regrowth method |
Guan-Qing Yang(杨冠卿)1,2, Shi-Zhu Zhang(张世著)1,2, Bo Xu(徐波)1,2, Yong-Hai Chen(陈涌海)1,2, Zhan-Guo Wang(王占国)1,2 |
1 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Two kinds of InAs/GaAs quantum dot (QD) structures are grown by molecular beam epitaxy in formation-dissolution-regrowth method with different in-situ annealing and regrowth processes. The densities and sizes of quantum dots are different for the two samples. The variation tendencies of PL peak energy, integrated intensity, and full width at half maximum versus temperature for the two samples are analyzed, respectively. We find the anomalous temperature dependence of the InAs/GaAs quantum dots and compare it with other previous reports. We propose a new energy band model to explain the phenomenon. We obtain the activation energy of the carrier through the linear fitting of the Arrhenius curve in a high temperature range. It is found that the GaAs barrier layer is the major quenching channel if there is no defect in the material. Otherwise, the defects become the major quenching channel when some defects exist around the QDs.
|
Received: 17 January 2017
Revised: 27 March 2017
Accepted manuscript online:
|
PACS:
|
81.07.Ta
|
(Quantum dots)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
82.20.Pm
|
(Rate constants, reaction cross sections, and activation energies)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB632104) and the National Key Research and Development Program of China (Grant No. 2016YFB0402302). |
Corresponding Authors:
Bo Xu
E-mail: srex@semi.ac.cn
|
Cite this article:
Guan-Qing Yang(杨冠卿), Shi-Zhu Zhang(张世著), Bo Xu(徐波), Yong-Hai Chen(陈涌海), Zhan-Guo Wang(王占国) Anomalous temperature dependence of photoluminescence spectra from InAs/GaAs quantum dots grown by formation-dissolution-regrowth method 2017 Chin. Phys. B 26 068103
|
[1] |
Lv X Q, Jin P and Wang Z G 2010 Chin. Phys. B 19 018104
|
[2] |
Ji H M, Cao Y L, Yang T, Ma W Q, Cao Q and Chen L H 2009 Acta Phys. Sin. 58 1896 (in Chinese)
|
[3] |
Wang T, Zhang J J and Liu H Y 2015 Acta Phys. Sin. 64 204209 (in Chinese)
|
[4] |
Lv Z R, Ji H M, Yang X G, Luo S, Gao F, Xu F and Yang T 2016 Chin. Phys. Lett. 33 124204
|
[5] |
Arakawa Y and Sakaki H 1982 Appl. Phys. Lett. 40 939
|
[6] |
Bhattacharya P and Mi Z 2007 Proc. IEEE 95 1723
|
[7] |
Zhukov A E, Maksimov M V and Kovsh A R 2012 Semiconductors 46 1225
|
[8] |
Wang T, Liu H Y and Zhang J J 2016 Chin. Phys. Lett. 33 044207
|
[9] |
Fafaxd S, Raymond S, Wang G, Leon R, Leonar D, Charbonneau S, Merz J L, Petroff P M and Bowers J E 1996 Surf. Sci. 361 778
|
[10] |
Fafard S, Leon R, Leonard D, Merz J L and Petroff P M 1994 Phys. Rev. B 50 8086
|
[11] |
Xu Z Y, Lu Z D, Yang X P, Yuan Z L, Zheng B Z and Xu J Z 1996 Phys. Rev. B 54 11528
|
[12] |
Fafard S, Leon R, Leonard D, Merz J L and Petroff P M 1995 Phys. Rev. B 52 5752
|
[13] |
Fafard S, Leonard D, Merz J L and Petroff P M 1994 Appl. Phys. Lett. 65 1388
|
[14] |
Xu Z Y, Lu Z D, Yuan Z L, Yang X P, Zheng B Z and Xu J Z 1998 Superlattices Microstruct. 23 381
|
[15] |
Dai Y T, Fan J C, Chen Y F, Lin R M, Lee S C and Lin H H 1997 J. Appl. Phys. 82 4489
|
[16] |
Huang S S, Niu Z C, Ni H Q, Zhan F, Zhao H, Sun Z and Xia J B 2007 Chin. Phys. B 24 1025
|
[17] |
Zhang S Z, Ye X L, Xu B, Liu S M, Zhou W F and Wang Z G 2013 Chin. Phys. Lett. 30 087804
|
[18] |
Jiang Q Q, Li W X, Tang C C, Chang Y C, Hao T T, Pan X Y, Ye H T, Li J J and Gu C J 2016 Chin. Phys. B 25 118105
|
[19] |
Zhu G, Zheng F, Wang C, Sun Z B, Zhai G J and Zhao Q 2016 Chin. Phys. B 25 118505
|
[20] |
Dong Y, Wang G L, Wang H P, Ni H Q, Chen J H, Gao F Q, Qiao Z T, Yang X H and Niu Z C 2014 Chin. Phys. B 23 104209
|
[21] |
Naiki H, Masuo S, MacHida S and Itaya A 2017 J. Phys. Chem. C 115 23299
|
[22] |
Cheng D F, Li X, Zhang C F, Tan H, Wang C, Pang L F and Shi H C 2017 ACS Appl. Mat. Interf. 7 2847
|
[23] |
Andre Schwagmann, Sokratis Kalliakos, Ian Farrer, Jonathan P Griffiths, Geb A C Jones, David A Ritchie and Andrew J Shields 2015 Appl. Phys. Lett. 99 46
|
[24] |
Meyer H M, Stockill R, Steiner M, Gall C Le, Matthiesen C, Clarke E, Ludwig A, Reichel J, Atature M and Kohl M 2015 Phys. Rev. Lett. 114 123001
|
[25] |
Zhang W, Shi Z W, Huo D Y, Guo X X and Peng C S 2016 Acta Phys. Sin. 65 117801 (in Chinese)
|
[26] |
Shang X J, Xu J X, Ma B, Chen Z S, Wei S H, Li M F, Zha G W, Zhang L C, Yu Y, Ni H Q and Niu Z C 2016 Chin. Phys. B 25 107805
|
[27] |
Heyn C, Endler D, Zhang K and Hansen W 2000 J. Cryst. Growth 210 421
|
[28] |
Heyn C, Endler D, Zhang K and Hansen W 2002 Phys. Rev. B 66 5237
|
[29] |
Joyce P B, Krzyzewski T J, Bell G R, Joyce B A and Jones T S 1998 Phys. Rev. B 58 15981
|
[30] |
Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
|
[31] |
Zhou G Y, Chen Y H, Zhou X L, Xu B, Ye X L and Wang Z G 2010 Physica E 43 308
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|