INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Magnesium incorporation efficiencies in MgxZn1-xO films on ZnO substrates grown by metalorganic chemical vapor deposition |
Qi-Chang Hu(胡启昌)1, Kai Ding(丁凯)2 |
1 College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; 2 Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China |
|
|
Abstract We investigate the magnesium (Mg) incorporation efficiencies in MgxZn1-xO films on c-plane Zn-face ZnO substrates by using metalorganic chemical vapor deposition (MOCVD) technique. In order to deposit high quality MgxZn1-xO films, atomically smooth epi-ready surfaces of the hydrothermal grown ZnO substrates are achieved by thermal annealing in O2 atmosphere and characterized by atomic force microscope (AFM). The AFM, scanning electron microscope (SEM), and x-ray diffraction (XRD) studies demonstrate that the MgxZn1-xO films each have flat surface and hexagonal wurtzite structure without phase segregation at up to Mg content of 34.4%. The effects of the growth parameters including substrate temperature, reactor pressure and VI/II ratio on Mg content in the films are investigated by XRD analysis based on Vegard's law, and confirmed by photo-luminescence spectra and x-ray photoelectron spectroscopy as well. It is indicated that high substrate temperature, low reactor pressure, and high VI/II ratio are good for obtaining high Mg content.
|
Received: 31 October 2016
Revised: 04 March 2017
Accepted manuscript online:
|
PACS:
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
68.37.-d
|
(Microscopy of surfaces, interfaces, and thin films)
|
|
71.55.Gs
|
(II-VI semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61474121) and the Major Scientific Project of Fujian Province, China (Grant No. 2014NZ0002-2). |
Corresponding Authors:
Kai Ding
E-mail: kding@fjirsm.ac.cn
|
Cite this article:
Qi-Chang Hu(胡启昌), Kai Ding(丁凯) Magnesium incorporation efficiencies in MgxZn1-xO films on ZnO substrates grown by metalorganic chemical vapor deposition 2017 Chin. Phys. B 26 068104
|
[1] |
Yang W, Vispute R D, Choopun S, Sharma R P, Venkatesan T and Shen H 2001 Appl. Phys. Lett. 78 2787
|
[2] |
Nakahara K, Akasaka S, Yuji H, Tamura K, Fujii T, Nishimoto Y, Takamizu D, Sasaki A, Tanabe T, Takasu H, Amaike H, Onuma T, Chichibu S F, Tsukazaki A, Ohtomo A and Kawasaki M 2010 Appl. Phys. Lett. 97 013501
|
[3] |
Zheng Q H, Huang F, Ding K, Huang J, Chen D G, Zhan Z B and Lin Z 2011 Appl. Phys. Lett. 98 221112
|
[4] |
Sasa S, Maitani T, Furuya Y, Amano T, Koike K, Yano M and Inoue M 2011 Phys. Status Solidi A 208 449
|
[5] |
Sarver J F, Katnack F L and Hummel F A 1959 J. Electrochem. Soc. 106 960
|
[6] |
Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H, Sakurai Y, Yoshida Y, Yasuda T and Segawa Y 1998 Appl. Phys. Lett. 72 2466
|
[7] |
Park W I, Yi G C and Jang H M 2001 Appl. Phys. Lett. 79 2022
|
[8] |
Ryoken H, Ohashi N, Sakaguchi I, Adachi Y, Hishita S and Haneda H 2006 J. Cryst. Growth 287 134
|
[9] |
Kim I S and Lee B T 2009 J. Cryst. Growth 311 3618
|
[10] |
Li D H, Wang H Q, Zhou H, Li Y P, Huang Z, Zheng J C, Wang J O, Qian H J, Ibrahim K, Chen X, Zhan H, Zhou Y and Kang J 2016 Chin. Phys. B 25 076105
|
[11] |
Liu K, Pierce J M, Ali Y S, Krahnert A and Adekore B T 2011 J. Appl. Phys. 109 083524
|
[12] |
Fan H B, Zheng X L, Wu S C, Liu Z G and Yao H B 2012 Chin. Phys. B 21 038101
|
[13] |
Muret P, Tainoff D, Morhain C and Chauveau J M 2012 Appl. Phys. Lett. 101 122104
|
[14] |
Lin W W, Chen D G, Zhang J Y, Lin Z, Huang J K, Li W, Wang Y H and Huang F 2009 Cryst. Growth Des. 9 4378
|
[15] |
Sadofev S, Blumstengel S, Cui J, Puls J, Rogaschewski S, Schafer P, Sadofyev Y G and Henneberger F 2005 Appl. Phys. Lett. 87 091903
|
[16] |
Zhang T C, Venkatachalapathy V, Azarov A Y, Trunk M, Galeckas A and Kuznetsov A Y 2011 J. Cryst. Growth 333 66
|
[17] |
Pan C J, Hsu H C, Cheng H M, Wu C Y and Hsieh W F 2007 J. Solid State Chem. 180 1188
|
[18] |
Ogata K, Kawanishi T, Sakurai K, Kim S W, Maejima K, Fujita S and Fujita S 2002 Phys. Status Solidi B 229 915
|
[19] |
Graubner S, Neumann C, Volbers N, Meyer B K, Blasing J and Krost A 2007 Appl. Phys. Lett. 90 042103
|
[20] |
Nakamura T, Masuko K, Ashida A, Yoshimura T and Fujimura N 2011 J. Cryst. Growth 318 516
|
[21] |
Dong Y F, Fang Z Q, Look D C, Doutt D R, Cantwell G, Zhang J, Song J J and Brillson L J 2010 J. Appl. Phys. 108 103718
|
[22] |
Sallet V, Thiandoume C, Rommeluere J F, Lusson A, Riviere A, Riviere J P, Gorochov O, Triboulet R and Munoz-Sanjose V 2002 Mater. Lett. 53 126
|
[23] |
Bao S Y, Dong W J, Xu X, Luan T B, Li J and Zhang Q Y 2011 Acta Phys. Sin. 60 036804 (in Chinese)
|
[24] |
Yu X X, Zheng H M, Fang X Y, Jin H B and Cao M S 2014 Chin. Phys. Lett. 31 117301
|
[25] |
Ning S, Zhan P, Xie Q, Wang W and Zhang Z 2015 J. Mater. Sci. Technol. 31 969
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|