Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 068102    DOI: 10.1088/1674-1056/26/6/068102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Different effect of NiMnCo or FeNiCo on the growth of type-IIa large diamonds with Ti/Cu as nitrogen getter

Shang-Sheng Li(李尚升)11, He Zhang(张贺)1, Tai-Chao Su(宿太超)1, Qiang Hu(胡强)1, Mei-Hua Hu(胡美华)1, Chun-Sheng Gong(龚春生)2, Hon-An Ma(马红安)2, Xiao-Peng Jia(贾晓鹏)3, Yong Li(李勇)4
1 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
2 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
3 School of Data Science, Tongren University, Tongren 554300, China;
4 Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang 471023, China
Abstract  

In order to synthesize high-quality type-IIa large diamond, the selection of catalyst is very important, in addition to the nitrogen getter. In this paper, type-IIa large diamonds are grown under high pressure and high temperature (HPHT) by using the temperature gradient method (TGM), with adopting Ti/Cu as the nitrogen getter in Ni70Mn25Co5 (abbreviated as NiMnCo) or Fe55Ni29Co16 (abbreviated FeNiCo) catalyst. The values of nitrogen concentration (Nc) in both synthesized high-quality diamonds are less than 1 ppm, when Ti/Cu (1.6 wt%) is added in the FeNiCo or Ti/Cu (1.8 wt%) is added in the NiMnCo. The difference in solubility of nitrogen between both catalysts at HPHT is the basic reason for the different effect of Ti/Cu on eliminating nitrogen. The nitrogen-removal efficiency of Ti/Cu in the NiMnCo catalyst is less than in the FeNiCo catalyst. Additionally, a high-quality type-IIa large diamond size of 5.0 mm is obtained by reducing the growth rate and keeping the nitrogen concentration of the diamond to be less than 1 ppm, when Ti/Cu (1.6 wt%) is added in the FeNiCo catalyst.

Keywords:  high pressure and high temperature      catalyst      nitrogen getter      type-IIa large diamond  
Received:  17 January 2017      Revised:  14 March 2017      Accepted manuscript online: 
PACS:  81.05.ug (Diamond)  
  81.05.Bx (Metals, semimetals, and alloys)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11604246), the China Postdoctoral Science Foundation (Grant No. 2016M592714), the Professional Practice Demonstration Base for Professional Degree Graduate in Material Engineering of Henan Polytechnic University, China (Grant No. 2016YJD03), the Funds from the Education Department of Henan Province, China (Grant Nos. 12A430010 and 17A430020), and the Project for Key Science and Technology Research of Henan Province, China (Grant No. 162102210275).

Corresponding Authors:  Shang-Sheng Li     E-mail:  lishsh@hpu.edu.cn

Cite this article: 

Shang-Sheng Li(李尚升), He Zhang(张贺), Tai-Chao Su(宿太超), Qiang Hu(胡强), Mei-Hua Hu(胡美华), Chun-Sheng Gong(龚春生), Hon-An Ma(马红安), Xiao-Peng Jia(贾晓鹏), Yong Li(李勇) Different effect of NiMnCo or FeNiCo on the growth of type-IIa large diamonds with Ti/Cu as nitrogen getter 2017 Chin. Phys. B 26 068102

[1] Wentorf R H 1971 J. Phys. Chem. 75 1833
[2] Strong H M and Chrenko R M 1971 J. Phys. Chem. 75 1838
[3] Burns R C, Hansen J O, Spits R A, Sibanda M, Wellbourn C M and Welch D L 1999 Diamond Rel. Mater. 8 1433
[4] Sumiya H, Harano K and Tamasaku K 2015 Diamond Relat. Mater. 58 221
[5] Li S S, Gong C S, Su T C, Hu M H, Zhang H, Ma H A and Jia X P 2017 Int. J. Refract. Met. Hard Mater. 62 37
[6] Wang X C, Ma H A, Zang C Y, Tian Y, Li S S and Jia X P 2005 Chin. Phys. Lett. 22 1800
[7] Li Y D, Jia X P, Yan B M, Chen N, Fang C, Li Y and Ma H A 2016 Chin. Phys. B 25 048103
[8] Palyanov Y N, Borzdov Y M, KhokhryakovA F, Kupriyanov I N and Sokol A G 2010 Cryst. Growth Des. 10 3169
[9] Zhang H, Li S S, Su T C, Hu M H, Li G H, Ma H A and Jia X P 2016 Chin. Phys. B 25 058102
[10] Sumiya H, Toda N and Satoh S 2002 J. Cryst. Growth 237-239 1281
[11] Li S S, Li X L, Ma H A, Su T C, Xiao H Y, Huang G F, Li Y and Jia X P 2011 Chin. Phys. Lett. 28 068101
[12] Li Y, Jia X P, Feng Y G, Fang C, Fan L J, Li Y D, Zeng X and Ma H A 2015 Chin. Phys. B 24 088104
[13] Yan B M, Jia X P, Sun S S, Fang C, Chen N, Li Y D and Ma H A 2015 Int. J. Refract. Met. Hard Mater. 48 56
[14] Li S S, Jia X P, Zang C Y, Tian Y, Zhang Y F, Xiao H Y, Huang G F, Ma L Q, Li Y and Li X L 2008 Chin. Phys. Lett. 25 3801
[15] Zhang H, Li S S, Su T C, Hu M H, Zhou Y M, Fan H T, Gong C S, Jia X P, Ma H A and Xiao H Y 2015 Acta Phys. Sin. 64 198103 (in Chinese)
[16] Li S S, Ma H A, Li X L, Su T C, Huang G F, L Y and Jia X P 2011 Chin. Phys. B 20 028103
[17] Kanda H 2000 Braz. J. Phys 30 482
[18] Khokhryakov A F, Nechaev D V, Palyanov Y N and Kuper K E 2016 Diamond Relat. Mater. 70 1
[19] Sumiya H, Harano K and Tamasaku K 2015 Diamond Relat. Mater. 58 221
[20] Zang C Y Ma H A Liang Zh Z Li S S Zhang Y F and Jia X P 2006 Diamond Abrasives Eng. 6 9
[21] Kang K N, Jin Y, Kim J and Ajmera P K 2012 Diamond Relat. Mater. 27-28 76
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[3] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[4] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[5] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[6] Research progress of Pt and Pt-based cathode electrocatalysts for proton-exchange membrane fuel cells
Ni Suo(索妮), Longsheng Cao(曹龙生), Xiaoping Qin(秦晓平), and Zhigang Shao(邵志刚). Chin. Phys. B, 2022, 31(12): 128108.
[7] Accelerated oxygen evolution kinetics on Ir-doped SrTiO3 perovskite by NH3 plasma treatment
Li-Li Deng(邓丽丽), Xiao-Ping Ma(马晓萍), Man-Ting Lu(卢曼婷), Yi He(何弈), Rong-Lei Fan(范荣磊), and Yu Xin(辛煜). Chin. Phys. B, 2022, 31(11): 118201.
[8] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[9] C9N4 as excellent dual electrocatalyst: A first principles study
Wei Xu(许伟), WenWu Xu(许文武), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(9): 096802.
[10] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[11] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[12] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[13] A rational design of bimetallic PdAu nanoflowers as efficient catalysts for methanol oxidation reaction
Jinyang Liu(刘锦阳), Min Wu(武敏), Xinyi Yang(杨新一), Juan Ding(丁娟), Weiwei Lei(类伟巍), and Yongming Sui(隋永明). Chin. Phys. B, 2021, 30(5): 056102.
[14] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[15] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
No Suggested Reading articles found!