CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Density-functional theory study on the electronic properties of laves phase superconductor CaIr2 |
Yi Zhang(张奕), Xiang-Ming Tao(陶向明), Ming-Qiu Tan(谭明秋) |
Department of Physics, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract In this work we have used density-functional theory methods such as full-potential local orbital minimum basis (FPLO) and ELK-flapw to study the electronic structure of newly discovered Laves phase superconductor CaIr2. The calculation of density of states (DOS) indicates that the bands near Fermi level are mostly occupied by the d-electrons of iridium. The simulation of de Haas-van Alphen (dHvA) effect has been performed by using Elk code to check the Fermi surface topology. The results show that there exist four Fermi surfaces in CaIr2, including two electron-type and two hole-type surfaces. The optical response properties of CaIr2 have been calculated in the dipole-transition approximations combined with including intra-band Drude-like terms. In the optical spectrum σ (ω) shows that the crossover from intra-band to inter-band absorption occur near 1.45 eV. Further analysis on the electron energy loss spectra (EELS) matches the conclusion from that of optical conductivity σ (ω).
|
Received: 03 November 2016
Revised: 19 January 2017
Accepted manuscript online:
|
PACS:
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274084). |
Corresponding Authors:
Ming-Qiu Tan
E-mail: mqtan@zju.edu.cn
|
Cite this article:
Yi Zhang(张奕), Xiang-Ming Tao(陶向明), Ming-Qiu Tan(谭明秋) Density-functional theory study on the electronic properties of laves phase superconductor CaIr2 2017 Chin. Phys. B 26 047401
|
[1] |
Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
|
[2] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
|
[3] |
Moore J E and Balents L 2007 Phys. Rev. B 75 121306
|
[4] |
Schnyder A P, Ryu S, Furusaki A and Ludwig A W W 2008 Phys. Rev. B 78 195125
|
[5] |
Kitaev A 2009 AIP Conf. Proc. 1134 22
|
[6] |
Qi X L, Hughes T L, Raghu S and Zhang S C 2009 Phys. Rev. Lett. 102 187001
|
[7] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[8] |
Liang Y, Wu X X and Hu J P 2015 Chin. Phys. Lett. 32 117402
|
[9] |
Liu Y, Zhao J Z, Yu L, Lin C T, Liang A J, Hu C, Ding Y, Xu Y, He S L, Zhao L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Weng H M, Dai X, Fang Z and Zhou X J 2015 Chin. Phys. Lett. 32 067303
|
[10] |
Witczak-Krempa W, Chen G, Kim Y B and Balents L 2014 Ann. Rev. Condens. Matter Phys. 05 57
|
[11] |
Yang B J and Kim Y B 2010 Phys. Rev. B 82 085111
|
[12] |
Haldolaarachchige N, Gibson Q, Schoop L M, Luo H and Cava R J 2015 J. Phys: Condens. Matter 27 185701
|
[13] |
Compton V B and Matthias B T 1959 Acta Crystallographica 12 651
|
[14] |
Johannes R L, Haydock R and Heine V 1976 Phys. Rev. Lett. 36 372
|
[15] |
Stein F, Palm M and Sauthoff G 2004 Intermetallics 12 713
|
[16] |
Matthias B T and Corenzwit E 1957 Phys. Rev. 107 1558
|
[17] |
Ku H C, Matthias B T, Barz H 1979 Solid State Commun. 32 937
|
[18] |
Takeya H, ElMassalami M, Terrazos L A, Rapp R E, Capaz R B, Fujii H, Takano Y, Doerr M and Granovsky S A 2013 Sci. Technol. Adv. Mater. 14 3
|
[19] |
http://www.wien2k.at
|
[20] |
Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Techn. Universität Wien, Austria) ISBN 3-9501031-1-2
|
[21] |
Blaha P, Schwarz K, Sorantin P and Trickey S B 1990 Comput. Phys. Commun. 59 399
|
[22] |
http://www.fplo.de
|
[23] |
http://elk.sourceforge.net/
|
[24] |
Wood E A and Compton V B 1958 Acta Crystallographica 11 429
|
[25] |
Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
|
[26] |
Onsager L 1952 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Sceince ISSN:1941-5982
|
[27] |
McClure J W 1957 Phys. Rev. 108 612
|
[28] |
Kohn W 1961 Phys. Rev. 123 1242
|
[29] |
Aoki H, Uji S, Albessard A K and Onuki Y 1993 Phys. Rev. Lett. 71 2110
|
[30] |
Putzke C, Coldea I, Guillamón I, Vignolles D, McCollam A, LeBoeuf D, Watson M D, Mazin I I, Kasahara S, Terashima T, Shibauchi T, Matsuda Y and Carrington A 2012 Phys. Rev. Lett. 108 047002
|
[31] |
Terashima T, Kurita N, Kimata M, Tomita M, Tsuchiya S, Imai M, Sato A, Kihou K, Lee C H, Kito H, Eisaki H, Iyo A, Saito T, Fukazawa H, Kohori Y, Harima H and Uji S 2013 Phys. Rev. B 87 224512
|
[32] |
Shoenberg D 1984 Magnetic Oscillations in Metals (Cambridge: Cambridge University Press)
|
[33] |
Adolph B, Furthmüller J and Bechstedt F 2001 Phys. Rev. B 63 125108
|
[34] |
Guo G Y, Wang D S and Duan C G 2004 Phys. Rev. B 69 205416
|
[35] |
Mircholi F and Moghadam H G 2015 Optik-International Journal for Light and Electron Optics 126 17
|
[36] |
Hu C H, Yin X H, Wang D H, Zhong Y, Zhou H Y and Rao G H 2016 Chin. Phys. B 25 067801
|
[37] |
von Rohr F, Luo H, Ni N, Wörle M and Cava R J 2014 Phys. Rev. B 89 224504
|
[38] |
Klimczuk T, Ronning F, Sidorov V, Cava R J and Thompson J D 2007 Phys. Rev. Lett. 99 257004
|
[39] |
Rouke P M and Julian S R 2012 Comput. Phys. Commun. 183 324
|
[40] |
Abt R, Ambrosch-Draxl C and Knoll P 1994 Physica B 194-196 1451
|
[41] |
Ambrosch-Draxl C and Sofo J 2006 Comput. Phys. Commun. 175 1
|
[42] |
Shang X F, Tao X M, Chen W B, Chen H X, Wang M and Tan M Q 2008 Acta Phys. Sin. 57 5838 (in Chinese)
|
[43] |
Liu Q, Cheng X L, Li D H and Yang Z J 2010 Acta Phys. Sin. 59 8829 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|