Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 047401    DOI: 10.1088/1674-1056/26/4/047401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Density-functional theory study on the electronic properties of laves phase superconductor CaIr2

Yi Zhang(张奕), Xiang-Ming Tao(陶向明), Ming-Qiu Tan(谭明秋)
Department of Physics, Zhejiang University, Hangzhou 310027, China
Abstract  In this work we have used density-functional theory methods such as full-potential local orbital minimum basis (FPLO) and ELK-flapw to study the electronic structure of newly discovered Laves phase superconductor CaIr2. The calculation of density of states (DOS) indicates that the bands near Fermi level are mostly occupied by the d-electrons of iridium. The simulation of de Haas-van Alphen (dHvA) effect has been performed by using Elk code to check the Fermi surface topology. The results show that there exist four Fermi surfaces in CaIr2, including two electron-type and two hole-type surfaces. The optical response properties of CaIr2 have been calculated in the dipole-transition approximations combined with including intra-band Drude-like terms. In the optical spectrum σ (ω) shows that the crossover from intra-band to inter-band absorption occur near 1.45 eV. Further analysis on the electron energy loss spectra (EELS) matches the conclusion from that of optical conductivity σ (ω).
Keywords:  electronic structure      optical properties      density-functional calculation  
Received:  03 November 2016      Revised:  19 January 2017      Accepted manuscript online: 
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274084).
Corresponding Authors:  Ming-Qiu Tan     E-mail:  mqtan@zju.edu.cn

Cite this article: 

Yi Zhang(张奕), Xiang-Ming Tao(陶向明), Ming-Qiu Tan(谭明秋) Density-functional theory study on the electronic properties of laves phase superconductor CaIr2 2017 Chin. Phys. B 26 047401

[1] Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
[2] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[3] Moore J E and Balents L 2007 Phys. Rev. B 75 121306
[4] Schnyder A P, Ryu S, Furusaki A and Ludwig A W W 2008 Phys. Rev. B 78 195125
[5] Kitaev A 2009 AIP Conf. Proc. 1134 22
[6] Qi X L, Hughes T L, Raghu S and Zhang S C 2009 Phys. Rev. Lett. 102 187001
[7] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[8] Liang Y, Wu X X and Hu J P 2015 Chin. Phys. Lett. 32 117402
[9] Liu Y, Zhao J Z, Yu L, Lin C T, Liang A J, Hu C, Ding Y, Xu Y, He S L, Zhao L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Weng H M, Dai X, Fang Z and Zhou X J 2015 Chin. Phys. Lett. 32 067303
[10] Witczak-Krempa W, Chen G, Kim Y B and Balents L 2014 Ann. Rev. Condens. Matter Phys. 05 57
[11] Yang B J and Kim Y B 2010 Phys. Rev. B 82 085111
[12] Haldolaarachchige N, Gibson Q, Schoop L M, Luo H and Cava R J 2015 J. Phys: Condens. Matter 27 185701
[13] Compton V B and Matthias B T 1959 Acta Crystallographica 12 651
[14] Johannes R L, Haydock R and Heine V 1976 Phys. Rev. Lett. 36 372
[15] Stein F, Palm M and Sauthoff G 2004 Intermetallics 12 713
[16] Matthias B T and Corenzwit E 1957 Phys. Rev. 107 1558
[17] Ku H C, Matthias B T, Barz H 1979 Solid State Commun. 32 937
[18] Takeya H, ElMassalami M, Terrazos L A, Rapp R E, Capaz R B, Fujii H, Takano Y, Doerr M and Granovsky S A 2013 Sci. Technol. Adv. Mater. 14 3
[19] http://www.wien2k.at
[20] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Techn. Universität Wien, Austria) ISBN 3-9501031-1-2
[21] Blaha P, Schwarz K, Sorantin P and Trickey S B 1990 Comput. Phys. Commun. 59 399
[22] http://www.fplo.de
[23] http://elk.sourceforge.net/
[24] Wood E A and Compton V B 1958 Acta Crystallographica 11 429
[25] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[26] Onsager L 1952 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Sceince ISSN:1941-5982
[27] McClure J W 1957 Phys. Rev. 108 612
[28] Kohn W 1961 Phys. Rev. 123 1242
[29] Aoki H, Uji S, Albessard A K and Onuki Y 1993 Phys. Rev. Lett. 71 2110
[30] Putzke C, Coldea I, Guillamón I, Vignolles D, McCollam A, LeBoeuf D, Watson M D, Mazin I I, Kasahara S, Terashima T, Shibauchi T, Matsuda Y and Carrington A 2012 Phys. Rev. Lett. 108 047002
[31] Terashima T, Kurita N, Kimata M, Tomita M, Tsuchiya S, Imai M, Sato A, Kihou K, Lee C H, Kito H, Eisaki H, Iyo A, Saito T, Fukazawa H, Kohori Y, Harima H and Uji S 2013 Phys. Rev. B 87 224512
[32] Shoenberg D 1984 Magnetic Oscillations in Metals (Cambridge: Cambridge University Press)
[33] Adolph B, Furthmüller J and Bechstedt F 2001 Phys. Rev. B 63 125108
[34] Guo G Y, Wang D S and Duan C G 2004 Phys. Rev. B 69 205416
[35] Mircholi F and Moghadam H G 2015 Optik-International Journal for Light and Electron Optics 126 17
[36] Hu C H, Yin X H, Wang D H, Zhong Y, Zhou H Y and Rao G H 2016 Chin. Phys. B 25 067801
[37] von Rohr F, Luo H, Ni N, Wörle M and Cava R J 2014 Phys. Rev. B 89 224504
[38] Klimczuk T, Ronning F, Sidorov V, Cava R J and Thompson J D 2007 Phys. Rev. Lett. 99 257004
[39] Rouke P M and Julian S R 2012 Comput. Phys. Commun. 183 324
[40] Abt R, Ambrosch-Draxl C and Knoll P 1994 Physica B 194-196 1451
[41] Ambrosch-Draxl C and Sofo J 2006 Comput. Phys. Commun. 175 1
[42] Shang X F, Tao X M, Chen W B, Chen H X, Wang M and Tan M Q 2008 Acta Phys. Sin. 57 5838 (in Chinese)
[43] Liu Q, Cheng X L, Li D H and Yang Z J 2010 Acta Phys. Sin. 59 8829 (in Chinese)
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[5] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[6] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[7] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[8] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[9] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[10] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[11] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[12] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[13] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[14] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[15] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
No Suggested Reading articles found!