CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Temperature dependence of bismuth structures under high pressure |
Xiaobing Fan(范小兵), Shikai Xiang(向士凯)†, and Lingcang Cai(蔡灵仓) |
National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, China |
|
|
Abstract It is unclear whether there is a liquid-liquid phase transition or not in the bismuth melt at high temperature and high pressure. If so, it will be necessary to confirm the boundary of the liquid-liquid phase transition and clarify whether it is a first-order phase transition. Here, based on x-ray absorption spectra and simulations, the temperature dependence of bismuth structures is investigated under different pressures. According to the similarity of characteristic peaks of x-ray absorption near edge structure (XANES) spectra, we estimate the possible temperature ranges of liquid-liquid phase transition to be 779-799 K at 2.74 GPa and 859-879 K at 2.78 GPa, 809-819 K at 3.38 GPa and 829-839 K at 3.39 GPa and 729-739 K at 4.78 GPa. Using ab initio molecular dynamics (AIMD) simulations, we obtain the stable structures of the bismuth melt at different temperatures and pressures, and calculated their electronic structures. Meanwhile, two stable phases (phase III-like and phase IV-like) of bismuth melts are obtained from different initial phases of bismuth solids (phase III and phase IV) under the same condition (3.20 GPa and 800 K). Assuming that the bismuth melt undergoes a phase transition from IV-like to III-like between 809 K and 819 K at 3.38 GPa, the calculated electronic structures are consistent with the XANES spectra, which provides a possible explanation for the first-order liquid-liquid phase transition.
|
Received: 28 September 2021
Revised: 01 November 2021
Accepted manuscript online:
|
PACS:
|
61.05.cj
|
(X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES, etc.)
|
|
05.70.Fh
|
(Phase transitions: general studies)
|
|
81.30.Bx
|
(Phase diagrams of metals, alloys, and oxides)
|
|
61.20.Ja
|
(Computer simulation of liquid structure)
|
|
Fund: This work was supported by the CAEP Foundation (Grant No.CX2019002),the Science Challenge Project (Grant No.TZ2016001),and the National Natural Science Foundation of China (Grant Nos.11602251,U1730248,and 11802290). |
Corresponding Authors:
Shikai Xiang,E-mail:skxiang@caep.cn
E-mail: skxiang@caep.cn
|
About author: 2021-11-15 |
Cite this article:
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓) Temperature dependence of bismuth structures under high pressure 2022 Chin. Phys. B 31 056101
|
[1] Shimono M, Onodera H and Suzuki T 1999 Mater. Trans. JIM 40 1306 [2] Reichert H, Klein O, Dosch H, Denk M, Honkimaki V, Lippmann T and Reiter G 2000 Nature 408 839 [3] Mauro N A, Wessels V, Bendert J C, Klein S, Gangopadhyay A K, Kramer M J, Hao S G, Rustan G E, Kreyssig A, Goldman A I and Kelton K F 2011 Phys. Rev. B 83 184109 [4] Poole P H, Sciortino F, Essmann U and Stanley H E 1992 Nature 360 324 [5] Harrington S, Zhang R, Poole P H, Sciortino F and Stanley H E 1997 Phys. Rev. Lett. 78 2409 [6] Sastry S and Angell C A 2003 Nat. Mater. 2 739 [7] Boates B, Teweldeberhan A M and Bonev S A 2012 Proc. Natl. Acad. Sci. USA 109 14808 [8] Glosli J N and Ree F H 1999 Phys. Rev. Lett. 82 4659 [9] Morales M A, Pierleoni C, Schwegler E and Ceperley D M 2010 Proc. Natl. Acad. Sci. USA 107 12799 [10] Boates B and Bonev S A 2009 Phys. Rev. Lett. 102 015701 [11] Aasland S and McMillan P F 1994 Nature 369 633 [12] Mishima O and Stanley H E 1998 Nature 396 329 [13] Katayama Y, Mizutani T, Utsumi W, Shimomura O, Yamakata M and Funakoshi K I 2000 Nature 403 170 [14] Cadien A, Hu Q Y, Meng Y, Cheng Y Q, Chen M W, Shu J F, Mao H K and Sheng H W 2013 Phys. Rev. Lett. 110 125503 [15] Henry L, Mezouar M, Garbarino G, Sifré D and Datchi F 2020 Nature 584 382 [16] Woutersen S, Ensing B, Hilbers M, Zhao Z and Angell C A 2018 Science 359 1127 [17] Tanaka H, Kurita R and Mataki H 2004 Phys. Rev. Lett. 92 025701 [18] Kurita R and Tanaka H 2005 J. Phys.: Condens. Matter 17 L293 [19] Yaoita K, Tsuji K, Katayama Y, Imai M, Chen J Q, Kikegawa T and Shimomura O 1992 J. Non-Cryst. Solids 150 25 [20] Liu L, Song H X, Geng H Y, Bi Y, Xu J, Li X, Li Y and Liu J 2013 Phys. Status Solidi B 250 1398 [21] McMahon M I, Degtyareva O and Nelmes R J 2000 Phys. Rev. Lett. 85 4896 [22] McMahon M I, Degtyareva O, Nelmes R J, van Smaalen S and Palatinus L 2007 Phys. Rev. B 75 184114 [23] Chen H Y, Xiang S K, Yan X Z, Zheng L R, Zhang Y and Liu S G 2016 Chin. Phys. B 25 108103 [24] Duff R E and Minshall F S 1957 Phys. Rev. 108 1207 [25] Greenberg Y, Yahel E, Caspi E N, Benmore C, Beuneu B, Dariel M P and Makov G 2009 Europhys. Lett. 86 36004 [26] Shu Y, Yu D, Hu W, Wang Y, Shen G, Kono Y, Xu B, He J, Liu Z and Tian Y 2017 Proc. Natl. Acad. Sci. USA 114 3375 [27] Umnov A, Brazhkin V, Popova S and Voloshin R N 1992 J. Phys.: Condens. Matter 4 1427 [28] Jones R G 1988 Endeavour 12 195 [29] Aquilanti G, Trapananti A, Karandikar A, Kantor I, Marini C, Mathon O, Pascarelli S and Boehler R 2015 Proc. Natl. Acad. Sci. USA 112 12042 [30] Jiang N and Spence J C H 2006 J. Phys.: Condens. Matter 18 8029 [31] Yamaoka H, Jeschke H O, Yang X F, He T and Kubozono Y 2020 Phys. Rev. B 102 155118 [32] Souto J, Alemany M M G, Gallego L J, González L E and González D J 2010 Phys. Rev. B 81 134201 [33] Sun X, Zhou R and Zhang B 2017 Phys. Chem. Chem. Phys. 19 30498 [34] Akola J, Atodiresei N, Kalikka J, Larrucea J and Jones R O 2014 J. Chem. Phys. 141 194503 [35] Sbihi D E, Grosdidier B, Abdellah A B and Gasser J G 2010 Philos. Mag. 90 1511 [36] Fan X B, Xiang S K, Chen H Y and Cai L C 2021 J. Appl. Phys. 129 055901 [37] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res.: Solid Earth 91 4673 [38] Heinz D L 1990 Geophys. Res. Lett. 17 1161 [39] Li Y H, Chang J Z, Li X M, Yu Y Y, Dai C D and Zhang L 2012 Acta Phys. Sin. 61 206203 (in Chinese) [40] Su C, Liu Y G, Wang Z G, Song W, Asimow P D, Tang H F and Xie H S 2017 Physica B 524 154 [41] Blochl P E 1994 Phys. Rev. B 50 17953 [42] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [43] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [44] Nosé S 1984 J. Chem. Phys. 81 511 [45] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [46] Joly Y 2001 Phys. Rev. B 63 125120 [47] Slater O and Joly Y 2009 J. Phys.: Condens. Matter 21 345501 [48] Slater J C 1951 Phys. Rev. 81 385 [49] Zhao G, Yu Y J and Tan X M 2015 J. Chem. Phys. 143 054508 [50] Roux S L, Petkov V and Le S 2010 J. Appl. Crystallgr. 43 181 [51] Mizuki J, Kakimoto K, Misawa M, Fukunaga T and Watanabe N 1993 J. Phys.: Condens. Matter 5 3391 [52] Steinhardt P J, Nelson D R and Ronchetti M 1983 Phys. Rev. B 28 784 [53] Pedersen U R, Hummel F, Kresse G, Kahl G and Dellago C 2013 Phys. Rev. B 88 094101 [54] Mickel W, Kapfer S C, Schröder-Turk G E and Mecke K 2013 J. Chem. Phys. 138 044501 [55] Ravel B and Newville M 2005 J. Synch. Radiat. 12 537 [56] Ley L, Pollak R A, Kowalczyk S P, McFeely R and Shirley D A 1973 Phys. Rev. B 8 641 [57] Gonze X, Michenaud J P and Vigneron J P 1988 Phys. Scr. 37 785 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|