Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 056101    DOI: 10.1088/1674-1056/ac398d
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Temperature dependence of bismuth structures under high pressure

Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓)
National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, China
Abstract  It is unclear whether there is a liquid-liquid phase transition or not in the bismuth melt at high temperature and high pressure. If so, it will be necessary to confirm the boundary of the liquid-liquid phase transition and clarify whether it is a first-order phase transition. Here, based on x-ray absorption spectra and simulations, the temperature dependence of bismuth structures is investigated under different pressures. According to the similarity of characteristic peaks of x-ray absorption near edge structure (XANES) spectra, we estimate the possible temperature ranges of liquid-liquid phase transition to be 779-799 K at 2.74 GPa and 859-879 K at 2.78 GPa, 809-819 K at 3.38 GPa and 829-839 K at 3.39 GPa and 729-739 K at 4.78 GPa. Using ab initio molecular dynamics (AIMD) simulations, we obtain the stable structures of the bismuth melt at different temperatures and pressures, and calculated their electronic structures. Meanwhile, two stable phases (phase III-like and phase IV-like) of bismuth melts are obtained from different initial phases of bismuth solids (phase III and phase IV) under the same condition (3.20 GPa and 800 K). Assuming that the bismuth melt undergoes a phase transition from IV-like to III-like between 809 K and 819 K at 3.38 GPa, the calculated electronic structures are consistent with the XANES spectra, which provides a possible explanation for the first-order liquid-liquid phase transition.
Keywords:  liquid-liquid phase transition      bismuth melt      XANES      electronic structure  
Received:  28 September 2021      Revised:  01 November 2021      Accepted manuscript online: 
PACS:  61.05.cj (X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES, etc.)  
  05.70.Fh (Phase transitions: general studies)  
  81.30.Bx (Phase diagrams of metals, alloys, and oxides)  
  61.20.Ja (Computer simulation of liquid structure)  
Fund: This work was supported by the CAEP Foundation (Grant No.CX2019002),the Science Challenge Project (Grant No.TZ2016001),and the National Natural Science Foundation of China (Grant Nos.11602251,U1730248,and 11802290).
Corresponding Authors:  Shikai Xiang,E-mail:skxiang@caep.cn     E-mail:  skxiang@caep.cn
About author:  2021-11-15

Cite this article: 

Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓) Temperature dependence of bismuth structures under high pressure 2022 Chin. Phys. B 31 056101

[1] Shimono M, Onodera H and Suzuki T 1999 Mater. Trans. JIM 40 1306
[2] Reichert H, Klein O, Dosch H, Denk M, Honkimaki V, Lippmann T and Reiter G 2000 Nature 408 839
[3] Mauro N A, Wessels V, Bendert J C, Klein S, Gangopadhyay A K, Kramer M J, Hao S G, Rustan G E, Kreyssig A, Goldman A I and Kelton K F 2011 Phys. Rev. B 83 184109
[4] Poole P H, Sciortino F, Essmann U and Stanley H E 1992 Nature 360 324
[5] Harrington S, Zhang R, Poole P H, Sciortino F and Stanley H E 1997 Phys. Rev. Lett. 78 2409
[6] Sastry S and Angell C A 2003 Nat. Mater. 2 739
[7] Boates B, Teweldeberhan A M and Bonev S A 2012 Proc. Natl. Acad. Sci. USA 109 14808
[8] Glosli J N and Ree F H 1999 Phys. Rev. Lett. 82 4659
[9] Morales M A, Pierleoni C, Schwegler E and Ceperley D M 2010 Proc. Natl. Acad. Sci. USA 107 12799
[10] Boates B and Bonev S A 2009 Phys. Rev. Lett. 102 015701
[11] Aasland S and McMillan P F 1994 Nature 369 633
[12] Mishima O and Stanley H E 1998 Nature 396 329
[13] Katayama Y, Mizutani T, Utsumi W, Shimomura O, Yamakata M and Funakoshi K I 2000 Nature 403 170
[14] Cadien A, Hu Q Y, Meng Y, Cheng Y Q, Chen M W, Shu J F, Mao H K and Sheng H W 2013 Phys. Rev. Lett. 110 125503
[15] Henry L, Mezouar M, Garbarino G, Sifré D and Datchi F 2020 Nature 584 382
[16] Woutersen S, Ensing B, Hilbers M, Zhao Z and Angell C A 2018 Science 359 1127
[17] Tanaka H, Kurita R and Mataki H 2004 Phys. Rev. Lett. 92 025701
[18] Kurita R and Tanaka H 2005 J. Phys.: Condens. Matter 17 L293
[19] Yaoita K, Tsuji K, Katayama Y, Imai M, Chen J Q, Kikegawa T and Shimomura O 1992 J. Non-Cryst. Solids 150 25
[20] Liu L, Song H X, Geng H Y, Bi Y, Xu J, Li X, Li Y and Liu J 2013 Phys. Status Solidi B 250 1398
[21] McMahon M I, Degtyareva O and Nelmes R J 2000 Phys. Rev. Lett. 85 4896
[22] McMahon M I, Degtyareva O, Nelmes R J, van Smaalen S and Palatinus L 2007 Phys. Rev. B 75 184114
[23] Chen H Y, Xiang S K, Yan X Z, Zheng L R, Zhang Y and Liu S G 2016 Chin. Phys. B 25 108103
[24] Duff R E and Minshall F S 1957 Phys. Rev. 108 1207
[25] Greenberg Y, Yahel E, Caspi E N, Benmore C, Beuneu B, Dariel M P and Makov G 2009 Europhys. Lett. 86 36004
[26] Shu Y, Yu D, Hu W, Wang Y, Shen G, Kono Y, Xu B, He J, Liu Z and Tian Y 2017 Proc. Natl. Acad. Sci. USA 114 3375
[27] Umnov A, Brazhkin V, Popova S and Voloshin R N 1992 J. Phys.: Condens. Matter 4 1427
[28] Jones R G 1988 Endeavour 12 195
[29] Aquilanti G, Trapananti A, Karandikar A, Kantor I, Marini C, Mathon O, Pascarelli S and Boehler R 2015 Proc. Natl. Acad. Sci. USA 112 12042
[30] Jiang N and Spence J C H 2006 J. Phys.: Condens. Matter 18 8029
[31] Yamaoka H, Jeschke H O, Yang X F, He T and Kubozono Y 2020 Phys. Rev. B 102 155118
[32] Souto J, Alemany M M G, Gallego L J, González L E and González D J 2010 Phys. Rev. B 81 134201
[33] Sun X, Zhou R and Zhang B 2017 Phys. Chem. Chem. Phys. 19 30498
[34] Akola J, Atodiresei N, Kalikka J, Larrucea J and Jones R O 2014 J. Chem. Phys. 141 194503
[35] Sbihi D E, Grosdidier B, Abdellah A B and Gasser J G 2010 Philos. Mag. 90 1511
[36] Fan X B, Xiang S K, Chen H Y and Cai L C 2021 J. Appl. Phys. 129 055901
[37] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res.: Solid Earth 91 4673
[38] Heinz D L 1990 Geophys. Res. Lett. 17 1161
[39] Li Y H, Chang J Z, Li X M, Yu Y Y, Dai C D and Zhang L 2012 Acta Phys. Sin. 61 206203 (in Chinese)
[40] Su C, Liu Y G, Wang Z G, Song W, Asimow P D, Tang H F and Xie H S 2017 Physica B 524 154
[41] Blochl P E 1994 Phys. Rev. B 50 17953
[42] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[43] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[44] Nosé S 1984 J. Chem. Phys. 81 511
[45] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[46] Joly Y 2001 Phys. Rev. B 63 125120
[47] Slater O and Joly Y 2009 J. Phys.: Condens. Matter 21 345501
[48] Slater J C 1951 Phys. Rev. 81 385
[49] Zhao G, Yu Y J and Tan X M 2015 J. Chem. Phys. 143 054508
[50] Roux S L, Petkov V and Le S 2010 J. Appl. Crystallgr. 43 181
[51] Mizuki J, Kakimoto K, Misawa M, Fukunaga T and Watanabe N 1993 J. Phys.: Condens. Matter 5 3391
[52] Steinhardt P J, Nelson D R and Ronchetti M 1983 Phys. Rev. B 28 784
[53] Pedersen U R, Hummel F, Kresse G, Kahl G and Dellago C 2013 Phys. Rev. B 88 094101
[54] Mickel W, Kapfer S C, Schröder-Turk G E and Mecke K 2013 J. Chem. Phys. 138 044501
[55] Ravel B and Newville M 2005 J. Synch. Radiat. 12 537
[56] Ley L, Pollak R A, Kowalczyk S P, McFeely R and Shirley D A 1973 Phys. Rev. B 8 641
[57] Gonze X, Michenaud J P and Vigneron J P 1988 Phys. Scr. 37 785
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[5] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[6] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[10] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[11] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[12] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[13] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[14] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[15] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
No Suggested Reading articles found!