CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving |
Jianxin Shi(史建新)1,2, Weiwei Xu(许伟伟)1, Guozhu Sun(孙国柱)1, Jian Chen(陈健)1, Lin Kang(康琳)1, Peiheng Wu(吴培亨)1 |
1 Research Institute of Superconductor Electronics(RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2 Department of Electrical Engineering and Optoelectronic Technology, Nanjing University of Science and Technology Zijin College, Nanjing 210046, China |
|
|
Abstract We experimentally demonstrate the observation of macroscopic resonant tunneling (MRT) phenomenon of the macroscopic distinct flux states in a radio frequency superconducting quantum interference device (rf-SQUID) under a single-cycle sinusoidal driving. The population of the qubit exhibits interference patterns corresponding to resonant tunneling peaks between states in the adjacent potential wells. The dynamics of the qubit depends significantly on the amplitude, frequency, and initial phase of the driving signal. We do the numerical simulations considering the intra-well and inter-well relaxation mechanism, which agree well with the experimental results. This approach provides an effective way to manipulate the qubit population by adjusting the parameters of the external driving field.
|
Received: 31 October 2016
Revised: 18 January 2017
Accepted manuscript online:
|
PACS:
|
74.40.Kb
|
(Quantum critical phenomena)
|
|
74.50.+r
|
(Tunneling phenomena; Josephson effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474154, 61371036, 61571219, 11227904, and 61501222) and the Natural Science Fund for Distinguished Young Scholars of Jiangsu Province, China (Grant No. BK2012013) and PAPD. |
Corresponding Authors:
Weiwei Xu, Guozhu Sun
E-mail: wwxu@nju.edu.cn;gzsun@nju.edu.cn
|
Cite this article:
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨) Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving 2017 Chin. Phys. B 26 047402
|
[1] |
Noriyuki H and Susumu K 1987 Jpn. J. Appl. Phys. 26 1413
|
[2] |
Cleland A N, Martinis J M and Clarke J 1988 Phys. Rev. B 37 5950
|
[3] |
Schmidt J M, Cleland A N and Clarke J 1991 Phys. Rev. B 43 229
|
[4] |
Yu Y, Han S, Chu X, Chu S I and Wang Z 2002 Science 296 889
|
[5] |
Barone A, Kurizki G and Kofman A G 2004 Phys. Rev. Lett. 92 200403
|
[6] |
Yu Y, Janice D N, Lee C, Bhuwan Singh, Crankshaw D S, Orlando T P, Berggren K K and Oliver W D 2004 Phys. Rev. Lett. 92 117904
|
[7] |
Johnson P R, Parsons W T, Strauch F W, Anderson J R, Dragt A J, Lobb C J and Wellstood F C 2005 Phys. Rev. Lett. 94 187004
|
[8] |
Rouse R, Han S and Lukens J E 1995 Phys. Rev. Lett. 75 1614
|
[9] |
Han S, Rouse R and Lukens J E 1996 Phys. Rev. Lett. 76 3404
|
[10] |
Silvestrini P, Ruggiero B and Ovchinnikov Y N 1996 Phys. Rev. B 54 1246
|
[11] |
Esposito A, Granata C, Ovchinnikov Y N, Ruggiero B, Russo M and Silvestrini P 1997 Il Nuovo Cimento D 19 1435
|
[12] |
Averin D V, Friedman J R and Lukens J E 2000 Phys. Rev. B 62 11802
|
[13] |
Han S, Rouse R and Lukens J E 2000 Phys. Rev. Lett. 84 1300
|
[14] |
Granata C, Corato V, Longobardi L, Russo M, Ruggiero B and Silvestrini P 2002 Physica C: Superconductivity 372-376 Part 1 185
|
[15] |
Li S X, Yu Y, Zhang Y, Qiu W, Han S and Wang Z 2002 Phys. Rev. Lett. 89 098301
|
[16] |
Yang Y, Yu Z, Wei Q, Shaoxiong L, Siyuan H and Zhen W 2002 Supercond. Sci. Technol. 15 555
|
[17] |
Ovchinnikov Y N, Silvestrini P, Corato V and Rombetto S 2005 Phys. Rev. B 71 024529
|
[18] |
Rombetto S, Corato V, Yu N O, Ruggiero B and Silvestrini P 2006 J. Phys. Conf. Ser. 43 1195
|
[19] |
Ankerhold J and Grabert H 2003 Phys. Rev. Lett. 91 016803
|
[20] |
Ithier G, Collin E, Joyez P, Vion D, Esteve D, Ankerhold J and Grabert H 2005 Phys. Rev. Lett. 94 057004
|
[21] |
Fistul M V 2015 Phys. Rev. B 92 014505
|
[22] |
Amin M H S and Averin D V 2008 Phys. Rev. Lett. 100 197001
|
[23] |
Harris R, Johnson M W, Han S, Berkley A J, Johansson J, Bunyk P, Ladizinsky E, Govorkov S, Thom M C, Uchaikin S, Bumble B, Fung A, Kaul A, Kleinsasser A, Amin M H S and Averin D V 2008 Phys. Rev. Lett. 101 117003
|
[24] |
Johansson J, Amin M H S, Berkley A J, Bunyk P, Choi V, Harris R, Johnson M W, Lanting T M, Lloyd S and Rose G 2009 Phys. Rev. B 80 012507
|
[25] |
Lanting T, Amin M H S, Johnson M W, Altomare F, Berkley A J, Gildert S, Harris R, Johansson J, Bunyk P, Ladizinsky E, Tolkacheva E and Averin D V 2011 Phys. Rev. B 83 180502
|
[26] |
Cong S H, Wang Y W, Sun G Z, Chen J, Yu Y and Wu P H 2011 Chin. Phys. B 20 050316
|
[27] |
Sun G, Wen X, Wang Y, Cong S, Chen J, Kang L, Xu W, Yu Y, Han S and Wu P 2009 Appl. Phys. Lett. 94 102502
|
[28] |
Sun G, Zhai J, Wen X, Yu Y, Kang L, Xu W, Chen J, Wu P and Han S 2015 Appl. Phys. Lett. 106 172602
|
[29] |
Han S 2009 Prog. Phys. 29 166 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|