Special Issue:
TOPICAL REVIEW — ZnO-related materials and devices
|
TOPICAL REVIEW—ZnO-related materials and devices |
Prev
Next
|
|
|
Recent progress of ZnMgO ultraviolet photodetector |
Jia-Lin Yang(杨佳霖)1,2, Ke-Wei Liu(刘可为)1, De-Zhen Shen(申德振)1 |
1 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The ultra-violet (UV) detection has a wide application in both civil and military fields. ZnO is recognized as one of ideal materials for fabricating the UV photodetectors due to its plenty of advantages, such as wide bandgap, low cost, being environment-friendly, high radiation hardness, etc. Moreover, the alloying of ZnO with MgO to make ZnMgO could continually increase the band gap from ~3.3 eV to ~7.8 eV, which allows both solar blind and visible blind UV radiation to be detected. As is well known, ZnO is stabilized in the wurtzite structure, while MgO is stabilized in the rock salt structure. As a result, with increasing the Mg content, the crystal structure of ZnMgO alloy will change from wurtzite structure to rock salt structure. Therefore, ZnMgO photodetectors can be divided into three types based on the structures of alloys, namely, wurtzite-phase, cubic-phase and mixed-phase devices. In this paper, we review recent development and make the prospect of three types of ZnMgO UV photodetectors.
|
Received: 01 November 2016
Revised: 08 December 2016
Accepted manuscript online:
|
PACS:
|
73.61.Ga
|
(II-VI semiconductors)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61475153) and the 100 Talents Program of the Chinese Academy of Sciences. |
Corresponding Authors:
Ke-Wei Liu
E-mail: liukw@ciomp.ac.cn
|
Cite this article:
Jia-Lin Yang(杨佳霖), Ke-Wei Liu(刘可为), De-Zhen Shen(申德振) Recent progress of ZnMgO ultraviolet photodetector 2017 Chin. Phys. B 26 047308
|
[1] |
Chen H Y, Liu K W, Hu L F, Al-Ghamdi A A and Fang X S 2015 Mater. Today 18 493
|
[2] |
Peng L, Hu L F and Fang X S 2013 Adv. Mater. 25 5321
|
[3] |
Guo F W, Yang B, Yuan Y B, Xiao Z G, Dong Q F, Bi Y and Huang J S 2012 Nat. Nanotechnol. 7 798
|
[4] |
Sang L W, Liao M Y and Sumiya M 2013 Sensors 13 10482
|
[5] |
Alaie Z, Nejad S M and Yousefi M H 2015 Mater. Sci. Semicond. Process 29 16
|
[6] |
You K, Jiang H, Li D B, Sun X J, Song H, Chen Y R, Li Z M, Miao G Q and Liu H B 2012 Appl. Phys. Lett. 100 4
|
[7] |
Xie F, Lu H, Chen D J, Ji X L, Yan F, Zhang R, Zheng Y D, Li L and Zhou J J 2012 IEEE Sens. J. 12 5
|
[8] |
Zhu D, Wallis D J and Humphreys C J 2013 Rep. Prog. Phys. 76 31
|
[9] |
Scholz F 2012 Semicond. Sci. Technol. 27 15
|
[10] |
Hardy M T, Feezell D F, DenBaars S P and Nakamura S 2011 Mater. Today 14 408
|
[11] |
Cicek E, McClintock R, Cho C Y, Rahnema B and Razeghi M 2013 Appl. Phys. Lett. 103 4
|
[12] |
Sedhain A, Lin J Y and Jiang H X 2012 Appl. Phys. Lett. 100 4
|
[13] |
Gordon L, Lyons J L, Janotti A and Van de Walle C G 2014 Phys. Rev. B 89 6
|
[14] |
Lorenz K, Peres M, Franco N, Marques J G, Miranda S M C, Magalhaes S, Monteiro T, Wesch W, Alves E and Wendler E 2011 Conference on Oxide-based Materials and Devices II, January 23-26, 2011, San Francisco, CA, USA
|
[15] |
Brillson L J and Lu Y C 2011 J. Appl. Phys. 109 33
|
[16] |
Liu K W, Sakurai M and Aono M 2010 Sensors 10 8604
|
[17] |
Hou Y N, Mei Z X and Du X L 2014 J. Phys. D: Appl. Phys. 47 25
|
[18] |
Yang W, Hullavarad S S, Nagaraj B, Takeuchi I, Sharma R P, Venkatesan T, Vispute R D and Shen H 2003 Appl. Phys. Lett. 82 3424
|
[19] |
Makino T, Segawa Y, Kawasaki M, Ohtomo A, Shiroki R, Tamura K, Yasuda T and Koinuma H 2001 Appl. Phys. Lett. 78 1237
|
[20] |
Tsukazaki A, Ohtomo A, Kita T, Ohno Y, Ohno H and Kawasaki M 2007 Science 315 1388
|
[21] |
Shao R W, Zheng K, Wei B, Zhang Y F, Li Y J, Han X D, Zhang Z and Zou J 2014 Nanoscale 6 4936
|
[22] |
Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H, Sakurai Y, Yoshida Y, Yasuda T and Segawa Y 1998 Appl. Phys. Lett. 72 2466
|
[23] |
Ohtomo A, Tamura K, Kawasaki M, Makino T, Segawa Y, Tang Z K, Wong G K L, Matsumoto Y and Koinuma H 2000 Appl. Phys. Lett. 77 2204
|
[24] |
Gruber T, Kirchner C, Kling R, Reuss F and Waag A 2004 Appl. Phys. Lett. 84 5359
|
[25] |
Nakahara K, Akasaka S, Yuji H, Tamura K, Fujii T, Nishimoto Y, Takamizu D, Sasaki A, Tanabe T, Takasu H, Amaike H, Onuma T, Chichibu S F, Tsukazaki A, Ohtomo A and Kawasaki M 2010 Appl. Phys. Lett. 97 3
|
[26] |
Yang W, Vispute R D, Choopun S, Sharma R P, Venkatesan T and Shen H 2001 Appl. Phys. Lett. 78 2787
|
[27] |
Zhu H, Shan C X, Wang L K, Zheng J, Zhang J Y, Yao B and Shen D Z 2010 J. Phys. Chem. C 114 7169
|
[28] |
Liu K W, Shen D Z, Shan C X, Zhang J Y, Yao B, Zhao D X, Lu Y M and Fan X W 2007 Appl. Phys. Lett. 91 3
|
[29] |
Tabares G, Hierro A, Ulloa J M, Guzman A, Munoz E, Nakamura A, Hayashi T and Temmyo J 2010 Appl. Phys. Lett. 96 3
|
[30] |
Tang K, Huang J, Zeng Q K, Zhang J J, Shi W M, Xia Y B and Wang L J 2011 7th International Conference on Thin Film Physics and Applications, September 24-27, 2010, Shanghai, China
|
[31] |
Li G M, Zhang J W, Liu Y and Zhang K F 2011 Opt. Eng. 50 4
|
[32] |
Liu R S, Jiang D Y, Duan Q, Sun L, Tian C G, Liang Q C, Gao S and Qin J M 2014 Appl. Phys. Lett. 105 4
|
[33] |
Li J Y, Chang S P, Lin H H and Chang S J 2015 IEEE Photon. Technol. Lett. 27 978
|
[34] |
Hwang J D and Lin G S 2016 Nanotechnology 27 6
|
[35] |
Hou Y N, Mei Z X, Liang H L, Ye D Q, Liang S, Gu C Z and Du X L 2011 Appl. Phys. Lett. 98 3
|
[36] |
Schoenfeld W V, Wei M, Boutwell R C and Liu H Y 2014 Annual Conference on Oxide-Based Materials and Devices V held at SPIE Photonics West, February 2-5, 2014, San Francisco, CA, USA
|
[37] |
Zhao Y M, Zhang J Y, Jiang D Y, Shan C X, Zhang Z Z, Yao B, Zhao D X and Shen D Z 2009 ACS Appl. Mater. Interfaces 1 2428
|
[38] |
Liu K W, Shen D Z, Shan C X, Zhang J Y, Jiang D Y, Zhao Y M, Yao B and Zhao D X 2008 J. Phys. D: Appl. Phys. 41 3
|
[39] |
Jiang D Y, Zhang J Y, Liu K W, Zhao Y M, Cong C X, Lu Y M, Yao B, Zhang Z Z and Shen D Z 2007 Semicond. Sci. Technol. 22 687
|
[40] |
Hou Y N, Mei Z X, Liang H L, Ye D Q, Gu C Z, Du X L and Lu Y C 2013 IEEE Trans. Electron Dev. 60 3474
|
[41] |
Tian C H, Jiang D Y, Tan Z D, Duan Q, Liu R S, Sun L, Qin J M, Hou J H, Gao S, Liang Q C and Zhao J X 2014 Mater. Res. Bull. 60 46
|
[42] |
Chen H Y, Liu K W, Chen X, Zhang Z Z, Fan M M, Jiang M M, Xie X H, Zhao H F and Shen D Z 2014 J. Mater. Chem. C 2 9689
|
[43] |
Zhao Y J, Jiang D Y, Liu R S, Duan Q, Tian C G, Sun L, Gao S, Qin J M, Liang Q C and Zhao J X 2015 Solid-State Electron. 111 223
|
[44] |
Tian C G, Jiang D Y, Pei J A, Sun L, Liu R S, Guo Z X, Hou J H, Zhao J X, Liang Q C, Gao S and Qin J M 2016 J. Alloys Compd. 667 65
|
[45] |
Sun L, Jiang D Y, Zhang G Y, Liu R S, Duan Q, Qin J M, Liang Q C, Gao S, Hou J H, Zhao J X, Liu W Q and Shen X D 2016 J. Appl. Phys. 119 5
|
[46] |
Hu Z F, Li Z J, Zhu L, Liu F J, Lv Y W, Zhang X Q and Wang Y S 2012 Opt. Lett. 37 3072
|
[47] |
Shan C X, Liu J S, Lu Y J, Li B H, Ling F C C and Shen D Z 2015 Opt. Lett. 40 3041
|
[48] |
Zhang L N, Lin H T, Wu Y S and Zhuo S P 2016 Chem. Phys. Lett. 661 224
|
[49] |
Vempati S, Chirakkara S, Mitra J, Dawson P, Nanda K K and Krupanidhi S B 2012 Appl. Phys. Lett. 100 4
|
[50] |
Fan J C, Sreekanth K M, Xie Z, Chang S L and Rao K V 2013 Prog. Mater. Sci. 58 874
|
[51] |
Zhang B, Li M, Wang J Z and Shi L Q 2013 Chin. Phys. Lett. 30 027303
|
[52] |
Liu L, Xu J L, Wang D D, Jiang M M, Wang S P, Li B H, Zhang Z Z, Zhao D X, Shan C X, Yao B and Shen D Z 2012 Phys. Rev. Lett. 108 5
|
[53] |
Liu Z L, Mei Z X, Zhang T C, Liu Y P, Guo Y, Du X L, Hallen A, Zhu J J and Kuznetsov A Y 2009 J. Cryst. Growth 311 4356
|
[54] |
Zheng Q H, Huang F, Ding K, Huang J, Chen D G, Zhan Z B and Lin Z 2011 Appl. Phys. Lett. 98 3
|
[55] |
Liang H L, Mei Z X, Zhang Q H, Gu L, Liang S, Hou Y N, Ye D Q, Gu C Z, Yu R C and Du X L 2011 Appl. Phys. Lett. 98 3
|
[56] |
Hou Y N, Mei Z X, Liang H L, Ye D Q, Gu C Z and Du X L 2013 Appl. Phys. Lett. 102 4
|
[57] |
Liang H L, Mei Z X, Hou Y N, Liang S, Liu Z L, Liu Y P, Li J Q and Du X L 2013 J. Cryst. Growth 381 6
|
[58] |
Jiang D Y, Tian C G, Yang G, Qin J M, Liang Q C, Zhao J X, Hou J H and Gao S 2015 Mater. Res. Bull. 67 158
|
[59] |
Zheng Q H, Huang F, Huang J, Hu Q C, Chen D G and Ding K 2012 IEEE Electron Dev. Lett. 33 1033
|
[60] |
Hwang J D, Lin J S and Hwang S B 2015 J. Phys. D: Appl. Phys. 48 6
|
[61] |
Wang L K, Ju Z G, Zhang J Y, Zheng J, Shen D Z, Yao B, Zhao D X, Zhang Z Z, Li B H and Shan C X 2009 Appl. Phys. Lett. 95 3
|
[62] |
Han S, Zhang J Y, Zhang Z Z, Zhao Y M, Wang L K, Zheng J A, Yao B, Zhao D X and Shen D Z 2010 ACS Appl. Mater. Interfaces 2 1918
|
[63] |
Jiang D Y, Shan C X, Zhang J Y, Lu Y M, Yao B, Zhao D X, Zhang Z Z, Shen D Z and Yang C L 2009 J. Phys. D: Appl. Phys. 42 3
|
[64] |
Fan M M, Liu K W, Chen X, Zhang Z Z, Li B H, Zhao H F and Shen D Z 2015 J. Mater. Chem. C 3 313
|
[65] |
Han S, Zhang Z Z, Zhang J Y, Wang L K, Zheng J, Zhao H F, Zhang Y C, Jiang M M, Wang S P, Zhao D X, Shan C X, Li B H and Shen D Z 2011 Appl. Phys. Lett. 99 4
|
[66] |
Boutwell R C, Wei M and Schoenfeld W V 2013 Appl. Surf. Sci. 284 254
|
[67] |
Ju Z G, Shan C X, Jiang D Y, Zhang J Y, Yao B, Zhao D X, Shen D Z and Fan X W 2008 Appl. Phys. Lett. 9 3
|
[68] |
Xie X H, Zhang Z Z, Li B H, Wang S P, Jiang M M, Shan C X, Zhao D X, Chen H Y and Shen D Z 2014 Opt. Express 22 246
|
[69] |
Xie X H, Zhang Z Z, Li B H, Wang S P and Shen D Z 2015 Opt. Express 23 32329
|
[70] |
Boutwell R C, Wei M and Schoenfeld W V 2013 Appl. Phys. Lett. 103 4
|
[71] |
Liu C Y, Xu H Y, Wang L, Li X H and Liu Y C 2009 J. Appl. Phys. 106 4
|
[72] |
Xie X H, Zhang Z Z, Shan C X, Chen H Y and Shen D Z 2012 Appl. Phys. Lett. 101 3
|
[73] |
Fan M M, Liu K W, Zhang Z Z, Li B H, Chen X, Zhao D X, Shan C X and Shen D Z 2014 Appl. Phys. Lett. 10 5
|
[74] |
Fan M M, Liu K W, Chen X, Wang X, Zhang Z Z, Li B H and Shen D Z 2015 ACS Appl. Mater. Interfaces 7 20600
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|