Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 050302    DOI: 10.1088/1674-1056/ac2f33
GENERAL Prev   Next  

Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach

Wen-Li Chen(陈文利) and I B Okon1,†
1 School of Intelligent Science and Information Engineering, Xi'an Peihua University, Xi'an 710125, China;
2 Theoretical Physics Group, Department of Physics, University of Uyo, Nigeria
Abstract  Employing the Pekeris-type approximation to deal with the pseudo-centrifugal term, we analytically study the pseudospin symmetry of a Dirac nucleon subjected to equal scalar and vector modified Rosen-Morse potential including the spin-orbit coupling term by using the Nikiforov-Uvarov method and supersymmetric quantum mechanics approach. The complex eigenvalue equation and the total normalized wave functions expressed in terms of Jacobi polynomial with arbitrary spin-orbit coupling quantum number k are presented under the condition of pseudospin symmetry. The eigenvalue equations for both methods reproduce the same result to affirm the mathematical accuracy of analytical calculations. The numerical solutions obtained for different adjustable parameters produce degeneracies for some quantum number.
Keywords:  Dirac equation      modified Rosen-Morse potential      Nikiforov-Uvarov method      supersymmetric quantum mechanics approach  
Received:  20 August 2021      Revised:  09 October 2021      Accepted manuscript online: 
PACS:  03.65.Nk (Scattering theory)  
  03.65.Pm (Relativistic wave equations)  
  03.65.Db (Functional analytical methods)  
Corresponding Authors:  Wen-Li Chen,E-mail:physwlchen@peihua.edu.cn;I B Okon,E-mail:ituenokon@uniuyo.edu.ng     E-mail:  physwlchen@peihua.edu.cn;ituenokon@uniuyo.edu.ng
About author:  2021-10-13

Cite this article: 

Wen-Li Chen(陈文利) and I B Okon Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach 2022 Chin. Phys. B 31 050302

[1] Arima A, Harvey M and Shimizu K 1969 Phys. Lett. B 30 517
[2] Hecht K T and Adler A 1969 Nucl. Phys. A 137 129
[3] Dudek J, Nazarewicz W, Szymanski Z and Leander G A 1987 Phys. Rev. Lett. 59 1405
[4] Bahri C, Draayer J P and Moszkowski S A 1992 Phys. Rev. Lett. 68 2133
[5] Nazarewicz W, Twin P J, Fallon P and Garrett J D 1990 Phys. Rev. Lett. 64 1654
[6] Nazarewicz W, Riley M A and Garrett J D 1990 Nucl. Phys. A 512 61
[7] Zeng J Y, Meng J, Wu C S, Zhao E G, Xing Z and Chen X Q 1991 Phys. Rev. C 44 R1745
[8] Stephens F S, Deleplanque M A, Draper J E, Diamond R M, Macchiavelli A O, Beausang C W, Korten W, Kelly W H, Azaiez F, Becker J A, Henry E A, Yates S W, Brinkman M J, Kuhnert A and Cizewski J A 1990 Phys. Rev. Lett. 65 301
[9] Troltenier D, Nazarewicz W, Szymanski Z and Draayer J P 1994 Nucl. Phys. A 567 591
[10] Ginocchio J N 1999 Phys. Rev. C 59 2487
[11] von Neumann-Cosel P and Ginocchio j N 2000 Phys. Rev. C 62 014308
[12] Guo J Y and Sheng Z Q 2005 Phys. Lett. A 338 90
[13] Alhaidari A D, Bahlouli H and Al-Hasan A 2006 Phys. Lett. A 349 87
[14] Panella O, Biondini S and Arda A 2010 J. Phys. A: Math. Theor. 43 325302
[15] Lisboa R, Malheiro M, de Castro A S, Alberto P and Fiolhais M 2004 Phys. Rev. C 69 024319
[16] de Castro A S, Alberto P, Lisboa R and Malheiro M 2006 Phys. Rev. C 73 054309
[17] Yilmaza Y E and Akkaya A D 2010 Appl. Math. Comput. 216 545
[18] Jia C S, Chen T and Cui L G 2009 Phys. Lett. A 373 1621
[19] Wei G F and Dong S H 2009 Europhys. Lett. 87 40004
[20] Wei G F and Dong S H 2010 Phys. Lett. B 686 288
[21] Wei G F and Dong S H 2010 Eur. Phys. J. A 43 185
[22] Wei G F and Dong S H 2010 Eur. Phys. J. A 46 207
[23] Oyewumi K J and Akoshile C O 2010 Eur. Phys. J. A 45 311
[24] Ginocchio J N 1997 Phys. Rev. Lett. 78 436
[25] Ginocchio J N 2005 Phys. Rep. 414 165
[26] Liang H Z, Meng J and Zhou S G 2015 Phys. Rep. 570 1
[27] Zhang X C, Liu Q W, Jia C S and Wang L Z 2005 Phys. Lett. A 340 59
[28] Guo J Y, Meng J and Xu F X 2003 Chin. Phys. Lett. 20 602
[29] Zhao X Q, Jia C S and Yang Q B 2005 Phys. Lett. A 337 189
[30] Okon I B, Omubge E, Antia A D, Onate C A, Akpabio L E and Osafile O E 2021 Scientific Reports 11 892
[31] Leviatan A 2004 Phys. Rev. Lett. 92 202501
[32] Typel S 2008 Nucl. Phys. A 806 156
[33] Haxel O, Jensen J H D and Suess H E 1949 Phys. Rev. 75 1766
[34] Mayer M G 1949 Phys. Rev. 75 1969
[35] Zhang G D, Liu J Y, Zhang L H, Zhou W and Jia C S 2012 Phys. Rew. A 86 062501
[36] Dong S H and Cruz-Irisson M 2012 J. Math. Chem. 50 881
[37] Du L, Wang Y L and Liang G H 2017 Chin. Phys. Lett. 34 30303
[38] Farout M, Sever R and Ikhdair S M 2020 Chin. Phys. B 29 060303
[39] Ikot A N, Obong H P and Hassanabadi H 2015 Chin. Phys. Lett. 32 30201
[40] Gao J and Zhang M C 2016 Chin. Phys. Lett. 33 10303
[41] Jia C S, Liu J Y and Wang P Q 2008 Phys. Lett. A 372 4779
[42] Ikhdair S M 2009 Eur. Phys. J. A 39 307
[43] Okon I B, Popoola O O and Isonguyo C N 2017 Adv. High. Ener. Phys. 2017 9671816
[44] Tezcan C and Sever R 2009 Int. J. Theor. Phys. 48 337
[45] Pekeris C L 1934 Phys. Rev. 45 98
[46] Chen W L, Shi Y W and Wei G F 2016 Commun. Theor. Phys. 66 196
[47] Coope F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267
[48] Gradshteyn I S and Ryzhik I M 1994 Tables of Integrals, Series and Products, fifth Ed. (New York: Academic Press)
[1] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[2] Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method
Resita Arum Sari, A Suparmi, C Cari. Chin. Phys. B, 2016, 25(1): 010301.
[3] Approximate analytical solution of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential and trigonometric Scarf Ⅱ non-central potential
Ade Kurniawan, A. Suparmi, C. Cari. Chin. Phys. B, 2015, 24(3): 030302.
[4] Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential
L. B. Castro, A. S. de Castro. Chin. Phys. B, 2014, 23(9): 090301.
[5] Solution of Dirac equation around a charged rotating black hole
Lü Yan (吕嫣), Hua Wei (花巍). Chin. Phys. B, 2014, 23(4): 040403.
[6] Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction
S. Ortakaya, H. Hassanabadi, B. H. Yazarloo. Chin. Phys. B, 2014, 23(3): 030306.
[7] Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method
M. Eshghi, S. M. Ikhdair. Chin. Phys. B, 2014, 23(12): 120304.
[8] Relativistic symmetries of Deng–Fan and Eckart potentials with Coulomb-like and Yukawa-like tensor interactions
Akpan N. Ikot, S. Zarrinkamar, B. H. Yazarloo, H. Hassanabadi. Chin. Phys. B, 2014, 23(10): 100306.
[9] Spin and pseudospin symmetric Dirac particles in the field of Tietz–Hua potential including Coulomb tensor interaction
Sameer M. Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(9): 090305.
[10] Pseudoscalar Cornell potential for a spin-1/2 particle under spin and pseudospin symmetries in 1+1 dimension
M. Hamzavi, A. A. Rajabi. Chin. Phys. B, 2013, 22(9): 090301.
[11] Relativistic symmetries in the Hulthén scalar–vector–tensor interactions
Majid Hamzavi, Ali Akbar Rajabi. Chin. Phys. B, 2013, 22(8): 080302.
[12] Relativistic symmetries with the trigonometric Pöschl-Teller potential plus Coulomb-like tensor interaction
Babatunde J. Falaye, Sameer M. Ikhdair. Chin. Phys. B, 2013, 22(6): 060305.
[13] Relativistic symmetries in Rosen–Morse potential and tensor interaction using the Nikiforov–Uvarov method
Sameer M Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(4): 040302.
[14] Exact solutions of Dirac equation with Pöschl–Teller double-ring-shaped Coulomb potential via Nikiforov–Uvarov method
E. Maghsoodi, H. Hassanabadi, S. Zarrinkamar. Chin. Phys. B, 2013, 22(3): 030302.
[15] Relativistic symmetry of position-dependent mass particle in Coulomb field including tensor interaction
M. Eshghi, M. Hamzavi, S. M. Ikhdair. Chin. Phys. B, 2013, 22(3): 030303.
No Suggested Reading articles found!