|
|
Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach |
Wen-Li Chen(陈文利) and I B Okon1,† |
1 School of Intelligent Science and Information Engineering, Xi'an Peihua University, Xi'an 710125, China; 2 Theoretical Physics Group, Department of Physics, University of Uyo, Nigeria |
|
|
Abstract Employing the Pekeris-type approximation to deal with the pseudo-centrifugal term, we analytically study the pseudospin symmetry of a Dirac nucleon subjected to equal scalar and vector modified Rosen-Morse potential including the spin-orbit coupling term by using the Nikiforov-Uvarov method and supersymmetric quantum mechanics approach. The complex eigenvalue equation and the total normalized wave functions expressed in terms of Jacobi polynomial with arbitrary spin-orbit coupling quantum number k are presented under the condition of pseudospin symmetry. The eigenvalue equations for both methods reproduce the same result to affirm the mathematical accuracy of analytical calculations. The numerical solutions obtained for different adjustable parameters produce degeneracies for some quantum number.
|
Received: 20 August 2021
Revised: 09 October 2021
Accepted manuscript online:
|
PACS:
|
03.65.Nk
|
(Scattering theory)
|
|
03.65.Pm
|
(Relativistic wave equations)
|
|
03.65.Db
|
(Functional analytical methods)
|
|
Corresponding Authors:
Wen-Li Chen,E-mail:physwlchen@peihua.edu.cn;I B Okon,E-mail:ituenokon@uniuyo.edu.ng
E-mail: physwlchen@peihua.edu.cn;ituenokon@uniuyo.edu.ng
|
About author: 2021-10-13 |
Cite this article:
Wen-Li Chen(陈文利) and I B Okon Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach 2022 Chin. Phys. B 31 050302
|
[1] Arima A, Harvey M and Shimizu K 1969 Phys. Lett. B 30 517 [2] Hecht K T and Adler A 1969 Nucl. Phys. A 137 129 [3] Dudek J, Nazarewicz W, Szymanski Z and Leander G A 1987 Phys. Rev. Lett. 59 1405 [4] Bahri C, Draayer J P and Moszkowski S A 1992 Phys. Rev. Lett. 68 2133 [5] Nazarewicz W, Twin P J, Fallon P and Garrett J D 1990 Phys. Rev. Lett. 64 1654 [6] Nazarewicz W, Riley M A and Garrett J D 1990 Nucl. Phys. A 512 61 [7] Zeng J Y, Meng J, Wu C S, Zhao E G, Xing Z and Chen X Q 1991 Phys. Rev. C 44 R1745 [8] Stephens F S, Deleplanque M A, Draper J E, Diamond R M, Macchiavelli A O, Beausang C W, Korten W, Kelly W H, Azaiez F, Becker J A, Henry E A, Yates S W, Brinkman M J, Kuhnert A and Cizewski J A 1990 Phys. Rev. Lett. 65 301 [9] Troltenier D, Nazarewicz W, Szymanski Z and Draayer J P 1994 Nucl. Phys. A 567 591 [10] Ginocchio J N 1999 Phys. Rev. C 59 2487 [11] von Neumann-Cosel P and Ginocchio j N 2000 Phys. Rev. C 62 014308 [12] Guo J Y and Sheng Z Q 2005 Phys. Lett. A 338 90 [13] Alhaidari A D, Bahlouli H and Al-Hasan A 2006 Phys. Lett. A 349 87 [14] Panella O, Biondini S and Arda A 2010 J. Phys. A: Math. Theor. 43 325302 [15] Lisboa R, Malheiro M, de Castro A S, Alberto P and Fiolhais M 2004 Phys. Rev. C 69 024319 [16] de Castro A S, Alberto P, Lisboa R and Malheiro M 2006 Phys. Rev. C 73 054309 [17] Yilmaza Y E and Akkaya A D 2010 Appl. Math. Comput. 216 545 [18] Jia C S, Chen T and Cui L G 2009 Phys. Lett. A 373 1621 [19] Wei G F and Dong S H 2009 Europhys. Lett. 87 40004 [20] Wei G F and Dong S H 2010 Phys. Lett. B 686 288 [21] Wei G F and Dong S H 2010 Eur. Phys. J. A 43 185 [22] Wei G F and Dong S H 2010 Eur. Phys. J. A 46 207 [23] Oyewumi K J and Akoshile C O 2010 Eur. Phys. J. A 45 311 [24] Ginocchio J N 1997 Phys. Rev. Lett. 78 436 [25] Ginocchio J N 2005 Phys. Rep. 414 165 [26] Liang H Z, Meng J and Zhou S G 2015 Phys. Rep. 570 1 [27] Zhang X C, Liu Q W, Jia C S and Wang L Z 2005 Phys. Lett. A 340 59 [28] Guo J Y, Meng J and Xu F X 2003 Chin. Phys. Lett. 20 602 [29] Zhao X Q, Jia C S and Yang Q B 2005 Phys. Lett. A 337 189 [30] Okon I B, Omubge E, Antia A D, Onate C A, Akpabio L E and Osafile O E 2021 Scientific Reports 11 892 [31] Leviatan A 2004 Phys. Rev. Lett. 92 202501 [32] Typel S 2008 Nucl. Phys. A 806 156 [33] Haxel O, Jensen J H D and Suess H E 1949 Phys. Rev. 75 1766 [34] Mayer M G 1949 Phys. Rev. 75 1969 [35] Zhang G D, Liu J Y, Zhang L H, Zhou W and Jia C S 2012 Phys. Rew. A 86 062501 [36] Dong S H and Cruz-Irisson M 2012 J. Math. Chem. 50 881 [37] Du L, Wang Y L and Liang G H 2017 Chin. Phys. Lett. 34 30303 [38] Farout M, Sever R and Ikhdair S M 2020 Chin. Phys. B 29 060303 [39] Ikot A N, Obong H P and Hassanabadi H 2015 Chin. Phys. Lett. 32 30201 [40] Gao J and Zhang M C 2016 Chin. Phys. Lett. 33 10303 [41] Jia C S, Liu J Y and Wang P Q 2008 Phys. Lett. A 372 4779 [42] Ikhdair S M 2009 Eur. Phys. J. A 39 307 [43] Okon I B, Popoola O O and Isonguyo C N 2017 Adv. High. Ener. Phys. 2017 9671816 [44] Tezcan C and Sever R 2009 Int. J. Theor. Phys. 48 337 [45] Pekeris C L 1934 Phys. Rev. 45 98 [46] Chen W L, Shi Y W and Wei G F 2016 Commun. Theor. Phys. 66 196 [47] Coope F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267 [48] Gradshteyn I S and Ryzhik I M 1994 Tables of Integrals, Series and Products, fifth Ed. (New York: Academic Press) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|