ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Computational and experimental verification of a wide-angle metamaterial absorber |
Chao Chen(陈超)1,2, Wang Jun(王君)3 |
1 School of Computing Science, Sichuan University of Science & Engineering, Zigong 643000, China; 2 High Performance Computing Center, Sichuan University of Science and Engineering, Zigong 643000, China; 3 School of Science, Sichuan University of Science & Engineering, Zigong 643000, China |
|
|
Abstract A metamaterial absorber is computed numerically and measured experimentally in a 150-THz~300-THz range. The measured absorber achieves high absorption rate for both transverse electric (TE) and transverse magnetic (TM) polarizations at large angles of incidence. An absorption sensor scheme is proposed based on the measured absorber and the variations of surrounding media. Different surrounding media are applied to the surface of the absorption sensor (including air, water, and glucose solution). Measured results show that high figure of merit (FOM) values are obtained for different surrounding media. The proposed sensor does not depend on the substrate, which means that it can be transplanted to different sensing platforms conveniently.
|
Received: 05 September 2016
Revised: 24 November 2016
Accepted manuscript online:
|
PACS:
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11547196), the Key Projects of Sichuan Provincial Department of Education, China (Grant No. 15ZA0224), the Project of Sichuan Provincial Key Laboratory of Artificial Intelligence, China (Grant No. 2014RYJ01), and the Key Plan Projects of Science and Technology of Zigong, China (Grant No. 2016CXM05). |
Corresponding Authors:
Chao Chen
E-mail: yujun_lly@sina.com
|
Cite this article:
Chao Chen(陈超), Wang Jun(王君) Computational and experimental verification of a wide-angle metamaterial absorber 2017 Chin. Phys. B 26 044101
|
[1] |
Veselago V G 1968 Sov. Phys. Usp. 10 509
|
[2] |
Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075
|
[3] |
Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Schultz S 2000 Phys. Rev. Lett. 84 4184
|
[4] |
Cheng B H, Lan Y C and Tsai D P 2013 Opt. Express 21 14898
|
[5] |
Watts C M, Liu X and Padilla W J 2012 Adv. Mater. 24 OP98
|
[6] |
Wang Y T, Cheng B H, Ho Y Z, Lan Y C, Luan P G and Tsai D P Opt. Express 20 22953
|
[7] |
Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R and Padilla W J 2009 Phys. Rev. B 79 125104
|
[8] |
Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X and Averitt D R 2010 J. Phys. D: Appl. Phys. 43 225102
|
[9] |
Liu X, Starr T, Starr A F and Padilla W J 2010 Phys. Rev. Lett. 104 207403
|
[10] |
Wen Q Y, Zhang H W, Xie Y S, Yang Q H and Liu Y L 2009 Appl. Phys. Lett. 95 241111
|
[11] |
Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
|
[12] |
Cheng Y Z and Yang H L 2010 J. Appl. Phys. 108 034906
|
[13] |
Hu C, Zhao Z, Chen X and Luo X 2009 Opt. Express 17 11039
|
[14] |
Lee J and Lim S 2011 Electron. Lett. 47 478
|
[15] |
Li M H, Yang H L, Hou X W, Tian Y and Hou D Y 2010 Prog. Electron. Res. 108 37
|
[16] |
Cheng Y Z, Nie Y, Gong R Z and Yang H L 2011 Eur. Phys. J. Appl. Phys. 56 31301
|
[17] |
Kreibig U and Vollmer M 1995 Optical Properties of Metal Clusters (Berlin: Springer)
|
[18] |
Stewart M E, Anderton C R, Thompson L B, Maria J, Gray S K, Rogers J A and Nuzzo R G 2008 Chem. Rev. 108 494
|
[19] |
Lassiter J B, Aizpurua J, Hernandez L I, Brandl D W, Romero L, Lal S, Hafner J H, Nordlander P and Halas N J 2008 Nano Lett. 8 1212
|
[20] |
Dmitriev A, Haegglund C, Chen S, Fredriksson H, Pakizeh T, Kaell M and Sutherland D S 2008 Nano Lett. 8 3893
|
[21] |
Dodge M J. 1984 Appl. Opt. 23 1980
|
[22] |
Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W and Ward C A 1983 Appl. Opt. 22 1099
|
[23] |
Zhang S, Fan W, Malloy K J, Brueck S R J, Panoiu N C and Osgood R M 2006 J. Opt. Soc. Am. B 23 434
|
[24] |
Mary A, Rodrigo S G, Garcia-Vidal F J and Martin-Moreno L 2008 Phys. Rev. Lett. 27 101103902
|
[25] |
Smith D R, Vier D C, Koschny T and Soukoulis C M 2005 Phys. Rev. E 71 036617
|
[26] |
Liu X L, Starr T, Starr A F and Padilla W J 2010 Phys. Rev. Lett. 104 207403
|
[27] |
Cai W S, Chettiar U K, Yuan H K, Silva V C, Kildishev A V, Drachev V P and Shalaev V M 2007 Opt. Express 15 3333
|
[28] |
Fedotov V A, Mladyonov P L, Prosvirnin S L and Zheludev N I. 2005 Phys. Rev. E 72 056613
|
[29] |
Schwanecke A S, Fedotov V A, Khardikov V V, Prosvirnin S L, Chen Y and Zheludev N I 2007 J. Opt. A: Pure Appl. Opt. 9 L1
|
[30] |
Ferry V E, Munday J N and Atwater H A 2010 Adv. Mater. 22 4794
|
[31] |
Liu X L, Tyler T, Starr T, Starr A F, Jokerst N M and Padilla W J 2011 Phys. Rev. Lett. 107 045901
|
[32] |
Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J and Averitt R D 2008 Phys. Rev. B 78 241103
|
[33] |
Becker J, Truegler A, Jakab A, Hohenester U and Soennichsen C 2010 Plasmonics 5 161
|
[34] |
La S, Link S and Halas N J 2007 Nat. Photon. 1 641
|
[35] |
Becker J, Truegler A, Jakab A, Hohenester U and Soennichsen C 2010 Plasmonics 5 161
|
[36] |
La S, Link S and Halas N J 2007 Nat. Photon. 1 641
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|