Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 044101    DOI: 10.1088/1674-1056/26/4/044101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Computational and experimental verification of a wide-angle metamaterial absorber

Chao Chen(陈超)1,2, Wang Jun(王君)3
1 School of Computing Science, Sichuan University of Science & Engineering, Zigong 643000, China;
2 High Performance Computing Center, Sichuan University of Science and Engineering, Zigong 643000, China;
3 School of Science, Sichuan University of Science & Engineering, Zigong 643000, China
Abstract  A metamaterial absorber is computed numerically and measured experimentally in a 150-THz~300-THz range. The measured absorber achieves high absorption rate for both transverse electric (TE) and transverse magnetic (TM) polarizations at large angles of incidence. An absorption sensor scheme is proposed based on the measured absorber and the variations of surrounding media. Different surrounding media are applied to the surface of the absorption sensor (including air, water, and glucose solution). Measured results show that high figure of merit (FOM) values are obtained for different surrounding media. The proposed sensor does not depend on the substrate, which means that it can be transplanted to different sensing platforms conveniently.
Keywords:  sensors      metamaterials      simulation calculations  
Received:  05 September 2016      Revised:  24 November 2016      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11547196), the Key Projects of Sichuan Provincial Department of Education, China (Grant No. 15ZA0224), the Project of Sichuan Provincial Key Laboratory of Artificial Intelligence, China (Grant No. 2014RYJ01), and the Key Plan Projects of Science and Technology of Zigong, China (Grant No. 2016CXM05).
Corresponding Authors:  Chao Chen     E-mail:  yujun_lly@sina.com

Cite this article: 

Chao Chen(陈超), Wang Jun(王君) Computational and experimental verification of a wide-angle metamaterial absorber 2017 Chin. Phys. B 26 044101

[1] Veselago V G 1968 Sov. Phys. Usp. 10 509
[2] Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075
[3] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Schultz S 2000 Phys. Rev. Lett. 84 4184
[4] Cheng B H, Lan Y C and Tsai D P 2013 Opt. Express 21 14898
[5] Watts C M, Liu X and Padilla W J 2012 Adv. Mater. 24 OP98
[6] Wang Y T, Cheng B H, Ho Y Z, Lan Y C, Luan P G and Tsai D P Opt. Express 20 22953
[7] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R and Padilla W J 2009 Phys. Rev. B 79 125104
[8] Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X and Averitt D R 2010 J. Phys. D: Appl. Phys. 43 225102
[9] Liu X, Starr T, Starr A F and Padilla W J 2010 Phys. Rev. Lett. 104 207403
[10] Wen Q Y, Zhang H W, Xie Y S, Yang Q H and Liu Y L 2009 Appl. Phys. Lett. 95 241111
[11] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[12] Cheng Y Z and Yang H L 2010 J. Appl. Phys. 108 034906
[13] Hu C, Zhao Z, Chen X and Luo X 2009 Opt. Express 17 11039
[14] Lee J and Lim S 2011 Electron. Lett. 47 478
[15] Li M H, Yang H L, Hou X W, Tian Y and Hou D Y 2010 Prog. Electron. Res. 108 37
[16] Cheng Y Z, Nie Y, Gong R Z and Yang H L 2011 Eur. Phys. J. Appl. Phys. 56 31301
[17] Kreibig U and Vollmer M 1995 Optical Properties of Metal Clusters (Berlin: Springer)
[18] Stewart M E, Anderton C R, Thompson L B, Maria J, Gray S K, Rogers J A and Nuzzo R G 2008 Chem. Rev. 108 494
[19] Lassiter J B, Aizpurua J, Hernandez L I, Brandl D W, Romero L, Lal S, Hafner J H, Nordlander P and Halas N J 2008 Nano Lett. 8 1212
[20] Dmitriev A, Haegglund C, Chen S, Fredriksson H, Pakizeh T, Kaell M and Sutherland D S 2008 Nano Lett. 8 3893
[21] Dodge M J. 1984 Appl. Opt. 23 1980
[22] Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W and Ward C A 1983 Appl. Opt. 22 1099
[23] Zhang S, Fan W, Malloy K J, Brueck S R J, Panoiu N C and Osgood R M 2006 J. Opt. Soc. Am. B 23 434
[24] Mary A, Rodrigo S G, Garcia-Vidal F J and Martin-Moreno L 2008 Phys. Rev. Lett. 27 101103902
[25] Smith D R, Vier D C, Koschny T and Soukoulis C M 2005 Phys. Rev. E 71 036617
[26] Liu X L, Starr T, Starr A F and Padilla W J 2010 Phys. Rev. Lett. 104 207403
[27] Cai W S, Chettiar U K, Yuan H K, Silva V C, Kildishev A V, Drachev V P and Shalaev V M 2007 Opt. Express 15 3333
[28] Fedotov V A, Mladyonov P L, Prosvirnin S L and Zheludev N I. 2005 Phys. Rev. E 72 056613
[29] Schwanecke A S, Fedotov V A, Khardikov V V, Prosvirnin S L, Chen Y and Zheludev N I 2007 J. Opt. A: Pure Appl. Opt. 9 L1
[30] Ferry V E, Munday J N and Atwater H A 2010 Adv. Mater. 22 4794
[31] Liu X L, Tyler T, Starr T, Starr A F, Jokerst N M and Padilla W J 2011 Phys. Rev. Lett. 107 045901
[32] Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J and Averitt R D 2008 Phys. Rev. B 78 241103
[33] Becker J, Truegler A, Jakab A, Hohenester U and Soennichsen C 2010 Plasmonics 5 161
[34] La S, Link S and Halas N J 2007 Nat. Photon. 1 641
[35] Becker J, Truegler A, Jakab A, Hohenester U and Soennichsen C 2010 Plasmonics 5 161
[36] La S, Link S and Halas N J 2007 Nat. Photon. 1 641
[1] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[2] Transition-edge sensors using Mo/Au/Au tri-layer films
Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(2): 028501.
[3] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[4] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[5] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[6] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[7] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[8] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[9] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[10] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[11] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[12] A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage
Wenjun Yan(闫文君), Zhishen Jin(金志燊), Zhengyang Lin(林政扬), Shiyu Zhou(周诗瑜), Yonghai Du(杜永海), Yulong Chen(陈宇龙), and Houpan Zhou(周后盘). Chin. Phys. B, 2022, 31(11): 110704.
[13] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[14] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[15] Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials
Huawei Yao(姚华伟), Xiaoxia Wang(王晓霞), Huaiyuan Yin(殷怀远), Yuanlin Jia(贾渊琳), Yong Gao(高勇), Junqiao Wang(王俊俏), and Chunzhen Fan(范春珍). Chin. Phys. B, 2021, 30(6): 064214.
No Suggested Reading articles found!