Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 024207    DOI: 10.1088/1674-1056/ac0a63
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber

Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光)
State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  A high sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber is proposed in this work. In order to achieve high sensitivity and high stability, the gold layer is coated on the side-polished photonic crystal fiber to support surface plasmon resonance. The mixture of ethanol and chloroform is used as the thermosensitive liquid. The performances of the proposed temperature sensor were investigated by the finite element method (FEM). Simulation results indicate that the sensitivity of the temperature sensor is as high as 7.82 nm/℃. It has good linearity (R2=0.99803), the resolution of 1.1×10-3℃, and the amplitude sensitivity of 0.1008℃-1. In addition, the sizes of the small air hole and polishing depth have little influence on the sensitivity. Therefore, the proposed sensor shows a high structure tolerance. The excellent performance and high structure tolerance of the sensor make it an appropriate choice for temperature measurement.
Keywords:  photonic crystal fiber      sensors      surface plasmon  
Received:  06 May 2021      Revised:  08 June 2021      Accepted manuscript online:  11 June 2021
PACS:  42.81.-i (Fiber optics)  
  42.81.Pa (Sensors, gyros)  
  71.45.Gm (Exchange, correlation, dielectric and magnetic response functions, plasmons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074331), the Natural Science Foundation of Hebei Province, China (Grant No. F2020203050), and the Postdoctoral preferred funding research project of Hebei Province, China (Grant No. B2018003008).
Corresponding Authors:  Xili Jing     E-mail:  sljingxl@ysu.edu.cn

Cite this article: 

Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光) High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber 2022 Chin. Phys. B 31 024207

[1] Chang M, Li B X, Chen N, Lu X L, Zhang X D and Xu J 2019 IEEE Photon. J. 11 7202312
[2] Lou S Q, Zhang W and Wang X 2018 Plasmonics 13 365
[3] Zhang Y X, Yuan J X, Qu Y W, Zhou X, Yan B B, Wu Q, Wang K R, Sang X Z, Long K P and Yu C X 2020 Chin. Phys. B 29 034208
[4] Xie Q L, Chen Y Z, Li X J, Yin Z, Wang L L, Geng Y F and Hong X M 2017 Appl. Opt. 56 001550
[5] Jiao H C, Feng L S, Wang J J, Wang K and Yang Z H 2017 Opt. Lett. 42 003016
[6] Ayyanar N, Vasantha Jayakantha Raja R, Vigneswaran D, Lakshmi B, Sumathi M and Porsezian K 2017 Opt. Mater. 64 574
[7] Yang X C, Lu Y, Liu B L and Yao J Q 2016 IEEE Photon. J. 8 6803309
[8] Gangwar R K and Singh V K 2016 Plasmonics 12 1367
[9] Li X G, Nguyen L V, Zhao Y, Ebendorff-Heidepriem H and WarrenSmith S C 2018 Sens Actuators B Chem. 269 103
[10] Fan Z K, Fang S B, Li S G and Wei Z Y 2019 Chin. Phys. B 28 094209
[11] Chaudharya V S, Kumara D, Mishraa R and Sharma S 2020 Optik 210 164497
[12] Homola J, Yee S S and Gauglitz G 1999 Sens Actuators B Chem. 54 3
[13] Chu S, Kaliyaperumal N, Abobaker A M, Aphale S S, Babu P R and Senthilanathan K 2019 IEEE J. Sel. Top. Quantum Electron. 25 1
[14] Tong K, Wang F C, Wang M T, Dang P and Wang Y X 2018 Opt. Fiber Technol. 46 306
[15] Dash J N and Jha R 2014 IEEE Photonics Technol. Lett. 26 1092
[16] Liu Y D, Jing X L, Li S G, Guo Y, Wang S, Wang J, Zhang W X, Wang M Y and Yu P T 2019 Appl. Opt. 58 5115
[17] Peng Y, Hou J, Huang Z H and Lu Q S 2012 Appl. Opt. 51 6361
[18] Lu Y, Wang M T, Hao C J, Zhao Z Q and Yao J Q 2014 IEEE Photon. J. 6 6801307
[19] Liu C, Wang F M, Lv J W, Sun T, Liu Q, Fu C F, Mu H W and Chu P K 2016 Opt. Commun. 359 378
[20] Weng S J, Pei L, Wang J S, Ning T G and Li J 2017 Photonics Res. 5 103
[21] Ghosh G, Endo M, Member, IEEE and Iwasalu T 1994 J Lightwave Technol. 12 1338
[22] Wang M T, Lu Y, Hao C J, Yang X C and Yao J Q 2015 Optik 126 3687
[23] Xu Y H, Chen X F and Zhu Y 2008 Sensors 8 1872
[24] Dash J N and Jha R 2015 Plasmonics 10 1123
[25] Wang X Y, Zhao Y Y, Li S G, Chen H L, Liu Q and Wang G Y 2016 Plasmonics 11 1
[26] Hasan M R, Akter S, Rahman M S and Ahmed K 2017 Opt. Eng. 56 1
[27] Mahfuz M A, Mollah M A, Momot M R, Paul A K, Masud A, Akter S and Hasan M R 2019 Opt. Mater. 90 315
[28] Aruna Gandhi M S, Senthilnathan K, Ramesh Babu P and Li Q 2019 Results Phys. 15 102590
[29] Chen Y Z, Xie Q L, Li X J, Zhou H S, Hong X M and Geng Y F 2017 J. Phys. D:Appl. Phys. 50 025101
[30] Mollah M A, Riazul Islam S M, Yousufali M, Abdulrazak L F, Hossain M B and Amiri I S 2020 Results Phys. 16 102966
[1] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Transition-edge sensors using Mo/Au/Au tri-layer films
Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(2): 028501.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[6] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[7] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[8] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[9] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[10] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[11] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[12] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[13] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[14] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[15] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
No Suggested Reading articles found!