Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 027103    DOI: 10.1088/1674-1056/26/2/027103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structural, electronic, and magnetic properties of vanadium atom-adsorbed MoSe2 monolayer

Ping Liu(刘萍), Zhen-Zhen Qin(秦真真), Yun-Liang Yue(乐云亮), Xu Zuo(左旭)
College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
Abstract  

Using the first-principles calculations, we study the structural, electronic, and magnetic properties of vanadium adsorbed MoSe2 monolayer, and the magnetic couplings between the V adatoms at different adsorption concentrations. The calculations show that the V atom is chemically adsorbed on the MoSe2 monolayer and prefers the location on the top of an Mo atom surrounded by three nearest-neighbor Se atoms. The interatomic electron transfer from the V to the nearest-neighbor Se results in the polarized covalent bond with weak covalency, associated with the hybridizations of V with Se and Mo. The V adatom induces local impurity states in the middle of the band gap of pristine MoSe2, and the peak of density of states right below the Fermi energy is associated with the V-dz2 orbital. A single V adatom induces a magnetic moment of 5 μB that mainly distributes on the V-3d and Mo-4d orbitals. The V adatom is in high-spin state, and its local magnetic moment is associated with the mid-gap impurity states that are mainly from the V-3d orbitals. In addition, the crystal field squashes a part of the V-4s electrons into the V-3d orbitals, which enhances the local magnetic moment. The magnetic ground states at different adsorption concentrations are calculated by generalized gradient approximations (GGA) and GGA+U with enhanced electron localization. In addition, the exchange integrals between the nearest-neighbor V adatoms at different adsorption concentrations are calculated by fitting the first-principle total energies of ferromagnetic (FM) and antiferromagnetic (AFM) states to the Heisenberg model. The calculations with GGA show that there is a transition from ferromagnetic to antiferromagnetic ground state with increasing the distance between the V adatoms. We propose an exchange mechanism based on the on-site exchange on Mo and the hybridization between Mo and V, to explain the strong ferromagnetic coupling at a short distance between the V adatoms. However, the ferromagnetic exchange mechanism is sensitive to both the increased inter-adatom distance at low concentration and the enhanced electron localization by GGA+U, which leads to antiferromagnetic ground state, where the antiferromagnetic superexchange is dominant.

Keywords:  V-adatom      MoSe2 monolayer      magnetic moment      magnetic coupling      first-principles calculation  
Received:  05 September 2016      Revised:  06 November 2016      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
  75.70.Ak (Magnetic properties of monolayers and thin films)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2011CB606405), the CAEP Microsystem and THz Science and Technology Foundation, China (Grant No. CAEPMT201501), and the Science Challenge Project, China (Grant No. JCKY2016212A503).

Corresponding Authors:  Xu Zuo     E-mail:  xzuo@nankai.edu.cn

Cite this article: 

Ping Liu(刘萍), Zhen-Zhen Qin(秦真真), Yun-Liang Yue(乐云亮), Xu Zuo(左旭) Structural, electronic, and magnetic properties of vanadium atom-adsorbed MoSe2 monolayer 2017 Chin. Phys. B 26 027103

[1] Song X F, Hu J L and Zeng H B 2013 J. Mater. Chem. C 1 2952
[2] Zhang Y J, Ye J T, Matsuhashi Y and Iwasa Y 2012 Nano Lett. 12 1136
[3] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[4] Coleman J N, Lotya M, O'Neill A, et al. 2011 Science 331 568
[5] Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S and Coleman J N 2013 Science 340 1226419
[6] Lee Y H, Zhang X Q, Zhang W J, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J and Lin T W 2012 Adv. Mater. 24 2320
[7] Lei T M, Wu S B, Zhang Y M, Liu J J, Guo H and Zhang Z Y 2013 Rare Met. Mater. Eng. 42 2477
[8] Huang W, Luo X, Gan C K, Quek S Y and Liang G C 2014 Phys. Chem. Chem. Phys. 16 10866
[9] Mak K F, He K L, Lee C, Lee G H, Hone J, Heinz T F and Shan J 2013 Nat. Mater. 12 207
[10] Jones A M, Yu H Y, Ghimire N J, Wu S F, Aivazian G, Ross J S, Zhao B, Yan J Q, Mandrus D G, Xiao D, Yao W and Xu X D 2013 Nat. Nanotechnol. 8 634
[11] Chen Z P, He J J, Zhou P, Na J and Sun L Z 2015 Comput. Mater. Sci. 110 102
[12] Cao J, Cui L and Pan J 2013 Acta Phys. Sin. 62 187102 (in Chinese)
[13] Andriotis A N and Menon M 2014 Phys. Rev. B 90 125304
[14] Wu M S, Xu B, Liu G and Quyang C Y 2013 Acta Phys. Sin. 62 037103 (in Chinese)
[15] Shi H L, Pan H, Zhang Y W and Yakobson B I 2013 Phys. Rev. B 87 155304
[16] Zhao X, Dai X Q, Xia C X, Wang T X and Peng Y T 2015 Solid State Commun. 215 1
[17] Ma Y D, Dai Y, Guo M, Niu C W, Lu J B and Huang B B 2011 Phys. Chem. Chem. Phys. 13 15546
[18] Zhao X, Xia C X, Wang T X, Peng Y T and Dai X Q 2015 J. Alloys Compd. 649 357
[19] Ghosh C K, Sarkar D, Mitra M K and Chattopadhyay K K 2013 J. Phys. Appl. Phys. 46 395304
[20] Zhang H, Fan X L, Yang Y and Xiao P 2015 J. Alloys Compd. 635 307
[21] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[22] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[23] Blöchl P E 1994 Phys. Rev. B 50 17953
[24] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[25] Du X S, Li Q X, Su H B and Yang J L 2006 Phys. Rev. B 74 233201
[26] Mishra R, Zhou W, Pennycook S J, Pantelides S T and Idrobo J C 2013 Phys. Rev. B 88 144409
[27] Wang Y Z, Wang B L, Huang R, Gao B L, Kong F J and Zhang Q F 2014 Phys. E Low-Dimens. Syst. Nanostructure 63 276
[28] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
[29] Bader R F W 1985 Acc. Chem. Res. 18 9
[30] Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J B, Grossman J C, and Wu J Q 2012 Nano Lett. 12 5576
[31] Li J, Hu M L, Yu Z Z, Zhong J X and Sun L Z 2012 Chem. Phys. Lett. 532 40
[32] Li C D, Zhao J L, Zhong C G, Dong Z C and Fang J H 2014 Acta Phys. Sin. 63 087502 (in Chinese)
[33] Li N N, Li H, Tang R L, Han D D, Zhao Y S, Gao W, Zhu P W and Wang X 2014 Chin. Phys. B 23 046105
[34] Masrour R, Hamedoun M, Benyoussef A, Hlil E K, Mounkachi O and Moussaoui H E 2014 Chin. Phys. Lett. 31 037501
[35] Ataca C and Ciraci S 2010 Phys. Rev. B 82 165402
[36] Power S R and Ferreira M S 2013 Crystals 3 49
[37] Hu F, Zhang G Y, Yang D, Zhang X L, Xue L P and Zhang L 2013 Chin. Phys. Lett. 30 087803
[38] Zheng Y L, Lu M C, Guo H X and Bao X L 2015 Acta Phys. Sin. 64 177501 (in Chinese)
[39] Cui Y, Li Y R, Li R Y and Wang Y P 2014 Chin. Phys. B 23 067504
[40] Zheng Y L, Wang X X, Ge Z L, Guo H L, Yan G F, Dai S H, Zhu X L and Tian X B 2013 Acta Phys. Sin. 62 227701 (in Chinese)
[41] Sarma D D, Mahadevan P, Saha-Dasgupta T, Ray S and Kumar A 2000 Phys. Rev. Lett. 85 2549
[42] Tian Y, Shen S P, Cong J Z, Yan L Q, Chai Y S and Sun Y 2016 Chin. Phys. B 25 017601
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[12] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[13] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[14] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[15] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
No Suggested Reading articles found!