Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 027102    DOI: 10.1088/1674-1056/26/2/027102

Structural, electronic, optical, and magnetic properties of Co-doped Cu2O

I Djabri, T Rezkallah, F Chemam
Laboratoire de la Physique Appliquée et Théorique, Département des Sciences de la matiére, Université Laarbi tebessi, tebessa, Algérie
Abstract  We investigate the magnetic properties of Co-doped Cu2O. We studied first the electronic and structural properties of Cu2O using the optimization of the lattice constant which is 4.18 Å. The calculated gap is found between 0.825 eV and 1.5 eV, these values are in good agreement with the experimental results. The Co atoms are inserted in Cu2O by means of the density functional theory (DFT) using LSDA, LSDA+U, and LSDA+MBJ approximations in the WIEN2k code, based on the supercell model by setting up 12, 24, and 48 atoms in (1×1×2), (1×2×2), and (2×2×2) supercells respectively with one or two copper atoms being replaced by cobalt atoms. The energy difference between the ferromagnetic and anti-ferromagnetic coupling of the spins located on the substitute Co has been calculated in order to obtain better insight into the magnetic exchange coupling for this particular compound. The studied compound exhibits stable integer magnetic moments of 2 μB and 4 μB when it is doped with 2 atoms of Co. Optical properties have also been worked out. The results obtained in this study demonstrate the importance of the magnetic effect in Cu2O.
Keywords:  Cu2O      electronic structure      magnetic properties      optical properties  
Received:  19 August 2016      Revised:  30 October 2016      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  75.50.Pp (Magnetic semiconductors)  
  78.66.-w (Optical properties of specific thin films)  
Corresponding Authors:  F Chemam     E-mail:

Cite this article: 

I Djabri, T Rezkallah, F Chemam Structural, electronic, optical, and magnetic properties of Co-doped Cu2O 2017 Chin. Phys. B 26 027102

[1] Guangwei Y, Xiaobo H, Duo L, Daliang S, Jing L, Huaijin Z Hong L and Jiyang W 2010 J. Electroanal. Chem. 638 225
[2] Asar A, Namdeo S and Gajbhiye J 2010 Solid State Chem. 183 3100
[3] Ogwu A A, Bouquerel E, Ademosu O, Moh S, Crossan E and Placido F 2005 Physica D 38 266
[4] Mittiga A, Salza E, Sarto F, Tucci M and Vasanthi R 2006 Appl. Phys. Lett. 88 163502
[5] Wei H M, Gong H B, Chen L, Zi M and Cao B Q 2012 Phys. Chem. C 116 10510
[6] Malerba C, Azanza Ricardo C L, D'Incau M, Biccari F, Scardi P and Mittiga A 2012 Sol. Energy Mater. Sol. Cells 105 192
[7] Hu C C, Nian J N and Teng H 2008 Sol. Energy Mater. Sol. Cells 92 1071
[8] De Jongh P E, Vanmaekelbergh D and Kelly J 1999 Chem. Commun. 10 69
[9] Hara M, Kondo T, Komoda M, Ikeda S, Kondo J, Domen K, Shinohara K and Tanaka A 1998 Chem. Commun. 357
[10] Zheng Z, Huang B, Wang Z, Guo M, Qin X, Zhang X, Wang P and Dai Y 2009 Phys. Chem. C 113 14448
[11] Huang W C, Lyu L M, YangY C and Huang M H 2012 Am. Chem. Soc. 134 1261
[12] Han X F, Han K H and Tao M 2009 Electrochem. Solid State Lett. 12 H89
[13] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnár S V, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[14] Herng T S, Lau S P, Yu S F, Yang H Y, Ji X H, Chen J S, Yasui N and Inaba H 2006 Appl. Phys. 99 086101
[15] Sato K and Katayama-Yoshida H 2002 Semicond. Sci. Technol. 17 367
[16] Delatorre R G, Munford M L, Zandonay R, ZoldanV C, Pasa A A, Schwarzacher W, Meruvia M S and Hümmelgen I A 2006 Appl. Phys. Lett. 88 3504
[17] Brandt I S, Lima E, Tumelero M A, Acuna J J S, Viegas A D C, Zysler R D and Pasa A A 2011 IEEE Trans. Mag. 47 2640
[18] Zhao Z Y, Yi J and Zhou D C 2014 Chin. Phys. B 23 017401
[19] Chieh-Cheng Ch and Hsuan-Chung W 2016 Materials 9 164
[20] Sieberer M, Redinger J and Mohn P 2007 Phys. Rev. B 75 035203
[21] Wei M, Braddon N, Zhi D, Midgley P A, Chen S K, Blamire M G and MacManus-Driscoll J L 2005 Appl. Phys. Lett. 86 072514
[22] Lui Y L, Harrington S, Yates K A, Wei M, Blamire M G, MacManus-Driscoll J L and Liu Y C 2005 Appl. Phys. Lett. 87 222108
[23] Antony J, Qiang Y, Faheem M and Meyer D 2007 Appl. Phys. Lett. 90 013106
[24] Kale S N, Ogale S B, Shinde S R, Sahasrabuddhe M, Kulkarni V N, Greene R L and Venkatesan T 2003 Appl. Phys. Lett. 82 2100
[25] Pan L Q, Zhu H, Fan C F, Wang W G, Zhang Y and Xiao J Q 2005 Appl. Phys. 97 10D318
[26] Kirfel A and Eichhorn K D 1990 Acta Crystal. A 46 271
[27] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2K, "an Augmented-Plane-Wave +Local Orbitals Program for Calculating Crystal Properties", ed. Schwarz K (Wien: Technische Wien)
[28] Katayama J, Ito K, Matsuoka M and Tamaki J 2004 Appl. Electrochem. 34 687
[29] Meyer B K, Polity A, Reppin D, Becke M, Hering P, Kramm B, Klar P J, Sander T, Reindl C, Heiliger C, Heinemann M, Müller C and Ronning C 2013 Semiconductors and Semimetals Vol. 88 (Elsevier Inc.) p. 201
[30] Ghisjen J, Tjeng L H, Elp J, Eskes H, Westerink J, Sawatsky G A and Czyzyk M T 1988 Phys. Rev. B 38 11322
[31] Ghijsen J, Tjeng L H, Eskes H, Sawatsky G A and Johnson R L 1990 Phys. Rev. B 42 2268
[32] Jiang Z Q, Yao G, An X Y, Fu Y J, Cao L H, Wu W D and Wang X M 2014 Chin. Phys. B 23 057104
[33] Xinguo M, Ying W, Yanhui L and Yongfa Zh 2013 Phys. Chem. C 117 26029
[34] Li L, Cheng Y, Wang W, Ren Sh, Yang Y, Luo X and Liu H 2011 Solid State Commun. 151 1583
[35] Yang Z J, Guo Y D, Li J, Liu J C, Dai W, Cheng X L and Yang X D 2010 Chin. Phys. B 19 077102
[36] Okoye C M I 2003 J. Phys.: Condens. Matter 15 5945
[37] Zhang X D, Guo M L, Liu C L, Zhang L A, Zhang W Y, Ding Y Q, Wu Q and Feng X 2008 Eur. Phys. B 62 417
[38] Yao G, Chen Y, An X Y, Jiang Z Q, Cao L H, Wu W D and Zhao Y 2013 Chin. Phys. Lett. 30 067101
[39] Cai M Q, Yin Z and Zhang M S 2003 Appl. Phys. Lett. 83 2805
[40] Anderson O L 1963 Phys. Chem. Sol. 24 909
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[5] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[6] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[7] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[8] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[9] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[10] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[11] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[12] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[13] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[14] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[15] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
No Suggested Reading articles found!