Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 046501    DOI: 10.1088/1674-1056/acaf2e

Magneto-volume effect in FenTi13-n clusters during thermal expansion

Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉)
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
Abstract  Ab initio molecular dynamics calculations have been carried out to search for the ground state structure of Fe$_{n}$Ti$_{13-n}$ clusters and measure the thermal expansion of Fe$_{n}$Ti$_{13-n}$. The volume of Fe$_{n}$Ti$_{13-n}$ clusters during thermal expansion is jointly determined by anharmonic interaction and magneto-volume effect. It has been found that Fe$_{6}$Ti$_{7}$, Fe$_{9}$Ti$_{4}$, Fe$_{11}$Ti$_{2}$, and Fe$_{13}$ clusters can exhibit the remarkable magneto-volume effect with abnormal volume behaviors and magnetic moment behaviors during thermal expansion. A prerequisite for the magneto-volume effect of Fe$_{n}$Ti$_{13-n}$ clusters during thermal expansion has been revealed and the magnitude of the magneto-volume is also approximately determined. Furthermore, the magneto-volume behaviors of Fe$_{n}$Ti$_{13-n}$ clusters are qualitatively characterized by the energy contour map. Our results shed light on the mechanism of the magneto-volume effect in Fe$_{n}$Ti$_{13-n}$ clusters during thermal expansion, which can guide the design of nanomaterials with zero expansion or even controllable expansion properties.
Keywords:  FenTi13-n cluster      thermal expansion      magneto-volume effect      magnetic moment  
Received:  17 August 2022      Revised:  28 December 2022      Accepted manuscript online:  30 December 2022
PACS:  65.40.De (Thermal expansion; thermomechanical effects)  
Fund: We would like to acknowledge the support from the National Natural Science Foundation of China (Grant No. 52171038) as well as key R&D projects in Shandong Province (Grant No. 2021SFGC1001). This work is also supported by the Special Funding in the Project of the Taishan Scholar Construction Engineering and the program of Jinan Science and Technology Bureau (Grant No. 2020GXRC019) as well as new material demonstration platform construction project from Ministry of Industry and Information Technology of China (Grant No. 2020-370104-34-03-043952-01-11).
Corresponding Authors:  Hui Li     E-mail:

Cite this article: 

Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉) Magneto-volume effect in FenTi13-n clusters during thermal expansion 2023 Chin. Phys. B 32 046501

[1] van Schilfgaarde M, Abrikosov I A and Johansson B 1999 Nature 400 46
[2] Song Y Z, Shi N K, Deng S Q, Xing X R and Chen J 2021 Prog. Mater. Sci. 121 100835
[3] Guillaume C E 1904 Nature 71 134
[4] Moruzzi V L 1990 Phys. Rev. B 41 6939
[5] Ekholm M and Abrikosov I A 2011 Phys. Rev. B 84 104423
[6] Akai H and Dederichs P H 1993 Phys. Rev. B 47 8739
[7] Abrikosov I A, Kissavos A E, Liot F, Alling B, Simak S I, Peil O and Ruban A V 2007 Phys. Rev. B 76 014434
[8] Liot F and Abrikosov I A 2009 Phys. Rev. B 79 014202
[9] Korenman V and Wyman B 1981 Phys. Rev. B 24 5413
[10] Rao Z Y, Cakir A, Ozgun O, Ponge D, Raabe D, Li Z M and Acet M 2021 Phys. Rev. Mater. 5 044406
[11] Iikubo S, Kodama K, Takenaka K, Takagi H, Takigawa M and Shamoto S 2008 Phys. Rev. Lett. 101 205901
[12] Iikubo S, Kodama K, Takenaka K, Takagi H and Shamoto S 2008 Phys. Rev. B 77 020409
[13] Takenaka K and Takagi H 2005 Appl. Phys. Lett. 87 261902
[14] Takenaka K, Ichigo M, Hamada T, Ozawa A, Shibayama T, Inagaki T and Asano K 2014 Sci. Technol. Adv. Mater. 15 015009
[15] Cowley R A 1963 Adv. Phys. 12 421
[16] Wallace D C 1965 Phys. Rev. 139 A877
[17] Yokoyama T and Eguchi K 2013 Phys. Rev. Lett. 110 075901
[18] Khmelevskyi S, Turek I and Mohn P 2003 Phys. Rev. Lett. 91 037201
[19] Khmelevskyi S and Mohn P 2010 Phys. Rev. B 82 134402
[20] Huang R, Liu Y, Fan W, Tan J, Xiao F, Qian L and Li L 2013 J. Am. Chem. Soc. 135 11469
[21] Song Y, Sun Q, Yokoyama T, Zhu H, Li Q, Huang R, Ren Y, Huang Q, Xing X and Chen J 2020 J. Phys. Chem. Lett. 11 1954
[22] Wang C, Chu L, Yao Q, Sun Y, Wu M, Ding L, Yan J, Na Y, Tang W, Li G, Huang Q and Lynn J W 2012 Phys. Rev. B 85 220103
[23] Guo X G , Lin J C, Tong P, Wang M, Wu Y, Yang C, Song B, Lin S, Song W H and Sun Y P 2015 Appl. Phys. Lett. 107 202406
[24] Song Y, Chen J, Liu X, Wang C, Zhang J, Liu H, Zhu H, Hu L, Lin K, Zhang S and Xing X 2018 J. Am. Chem. Soc. 140 602
[25] Li B, Luo X H, Wang H, Ren W J, Yano S, Wang C W, Gardner J S, Liss K D, Miao P, Lee S H, Kamiyama T, Wu R Q, Kawakita Y and Zhang Z D 2016 Phys. Rev. B 93 224405
[26] Li L F, Tong P, Zou Y M, Tong W, Jiang W B, Jiang Y, Zhang X K, Lin J C, Wang M, Yang C, Zhu X B, Song W H and Sun Y P 2018 Acta Mater. 161 258
[27] Poteryaev A I, Skorikov N A, Anisimov V I and Korotin M A 2016 Phys. Rev. B 93 205135
[28] Song Y, Sun Q, Xu M, Zhang J, Hao Y, Qiao Y, Zhang S, Huang Q, Xing X and Chen J 2020 Mater. Horizons 7 275
[29] Fu C, Huang J, Jiang Y and Li H 2022 J. Phys. Chem. Lett. 13 6644
[30] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[31] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 B864
[32] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
[33] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[34] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[35] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[36] Blochl P E 1994 Phys. Rev. B 50 17953
[37] Nose S 1984 J. Chem. Phys. 81 511
[38] Hoover W G 1985 Phys. Rev. A 31 1695
[39] Baletto F and Ferrando R 2005 Rev. Mod. Phys. 77 371
[40] Pannetier J, Bassasalsina J, Rodriguezcarvajal J and Caignaert V 1990 Nature 346 343
[41] Jones R O 1993 J. Chem. Phys. 99 1194
[42] Wang L L and Johnson D D 2007 Phys. Rev. B 75 235405
[43] Piotrowski M J, Piquini P and Da Silva J L F 2010 Phys. Rev. B 81 155446
[44] Bobadova-Parvanova P, Jackson K A, Srinivas S and Horoi M 2002 Phys. Rev. B 66 195402
[45] Ma Q M, Xie Z, Wang J, Liu Y and Li Y C 2007 Solid State Commun. 142 114
[46] Kim E, Mohrland A, Weck P F, Pang T, Czerwinski K R and Tomanek D 2014 Chem. Phys. Lett. 613 59
[47] Wang S Y, Yu J Z, Mizuseki H, Yan J A, Kawazoe Y and Wang C Y 2004 J. Chem. Phys. 120 8463
[48] Wang S Y, Duan W, Zhao D L and Wang C Y 2002 Phys. Rev. B 65 165424
[49] Yuan H K, Chen H, Kuang A L, Tian C L and Wang J Z 2013 J. Chem. Phys. 139 034314
[50] Alvarado-Leyva P G, Aguilera-Granja F, Balbas L C and Vega A 2013 Phys. Chem. Chem. Phys. 15 14458
[51] Purdum H, Montano P A, Shenoy G K and Morrison T 1982 Phys. Rev. B 25 4412
[52] Doverstal M, Lindgren B, Sassenberg U, Arrington C A and Morse M D 1992 J. Chem. Phys. 97 7087
[53] Dieguez O, Alemany M M G, Rey C, Ordejon P and Gallego L J 2001 Phys. Rev. B 63 205407
[54] Singh R and Kroll P 2008 Phys. Rev. B 78 245404
[55] de Heer W A, Milani P and Chtelain A 1990 Phys. Rev. Lett. 65 488
[56] Billas I M, Chatelain A and de Heer W A 1994 Science 265 1682
[57] Apsel S E, Emmert J W, Deng J and Bloomfield L A 1996 Phys. Rev. Lett. 76 1441
[58] Moruzzi V L and Marcus P M 1988 Phys. Rev. B 38 1613
[59] Wassermann E F 1991 J. Magn. Magn. Mater. 100 346
[60] Sleight A 2003 Nature 425 674
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[3] Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲). Chin. Phys. B, 2022, 31(4): 046501.
[4] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[5] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[6] Negative thermal expansion in NbF3 and NbOF2: A comparative theoretical study
Mingyue Zhang(张明月), Chunyan Wang(王春艳), Yinuo Zhang(张一诺), Qilong Gao(高其龙), and Yu Jia(贾瑜). Chin. Phys. B, 2021, 30(5): 056501.
[7] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
[8] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
[9] Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation
Lu Li(栗潞), Xiu-Hua Cui(崔秀花), Hai-Bin Cao(曹海宾), Yi Jiang(姜轶), Hai-Ming Duan(段海明), Qun Jing(井群), Jing Liu(刘静), Qian Wang(王倩). Chin. Phys. B, 2020, 29(7): 077101.
[10] Exploring ferromagnetic half-metallic nature of Cs2NpBr6 via spin polarized density functional theory
Malak Azmat Ali, G Murtaza, A Laref. Chin. Phys. B, 2020, 29(6): 066102.
[11] Laser scattering, transmittance and low thermal expansion behaviors in Y2-x(ZnLi)xMo3O12 by forming regular grains
Xian-Sheng Liu(刘献省), Yong-Guang Cheng(程永光), Bao-He Yuan(袁保合), Er-Jun Liang(梁二军), Wei-Feng Zhang(张伟风). Chin. Phys. B, 2019, 28(9): 096501.
[12] Conductive property of Zr0.1Fe0.9V1.1Mo0.9O7 with low thermal expansion
Xiaoke He(何小可), Heng Qi(戚恒), Qi Xu(徐启), Xiansheng Liu(刘献省), Lei Xu(许磊), Baohe Yuan(袁保合). Chin. Phys. B, 2019, 28(5): 056501.
[13] Inducing opto-electronic and spintronic trends in bilayer h-BN through TMO3 clusters incorporation: Ab-initio study
Irfan Ahmed, Muhammad Rafique, Mukhtiar Ahmed Mahar, Abdul Sattar Larik, Mohsin Ali Tunio, Yong Shuai(帅永). Chin. Phys. B, 2019, 28(11): 116301.
[14] Properties of negative thermal expansion β-eucryptite ceramics prepared by spark plasma sintering
Li-Min Zhao(赵利敏), Yong-Guang Cheng(程永光), Hao-Shan Hao(郝好山), Jiao Wang(王娇), Shao-Hui Liu(刘少辉), Bao-Sen Zhang(张宝森). Chin. Phys. B, 2018, 27(9): 096501.
[15] Phase transition and near-zero thermal expansion of Zr0.5Hf0.5VPO7
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Sai-Lei Li(李赛磊), Yan-Jun Ji(纪延俊), Wen-Ying Mu(穆文英), Wei-Wei Feng(冯伟伟), Gao-Jie Zeng(曾高杰), You-Wen Liu(刘友文), Er-Jun Liang(梁二军). Chin. Phys. B, 2018, 27(6): 066501.
No Suggested Reading articles found!