Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 116101    DOI: 10.1088/1674-1056/26/11/116101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Novel conductance step in carbon nanotube with wing-like zigzag graphene nanoribbons

Hong Liu(刘红)
Physics Department, Nanjing Normal University, Nanjing 210023, China
Abstract  Connecting one armchair carbon nanotube (CNT) to several zigzag graphene nanoribbons (ZGNRs) we find that the topologically-protected edge states of ZGNRs and the massless Dirac particle inherited from CNT still hold from the analysis of the band structure and the edge state. Furthermore, the lowest conductance step at the valley bottom increases proportionally with increasing the number of ZGNR wings. A novel conductance step of a peak occurs in the valley, which is two steps higher than the lowest step at the valley bottom. In addition, with increasing the number of ZGNR wings the width of the novel conductance step becomes narrow.
Keywords:  carbon nanotube      Dirac point      edge state      quantum conductance  
Received:  08 May 2017      Revised:  09 August 2017      Accepted manuscript online: 
PACS:  61.46.Np (Structure of nanotubes (hollow nanowires))  
  61.48.Gh (Structure of graphene)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.63.Fg (Nanotubes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10947004) and the Government Scholarship for Overseas Studies of Jiangsu Province, China.
Corresponding Authors:  Hong Liu     E-mail:  liuhong3@njnu.edu.cn

Cite this article: 

Hong Liu(刘红) Novel conductance step in carbon nanotube with wing-like zigzag graphene nanoribbons 2017 Chin. Phys. B 26 116101

[1] Iijima S 1991 Nature 354 56
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firov A A 2005 Nature 438 197
[3] Tombros N, Jozsa C, Popinciuc M, Jonkman H T and Van Wees B J 2007 Nature 448 571
[4] Williams J R, DiCarlo L and Marcus C M 2007 Science 317 638
[5] Ezawa M 2006 Phys. Rev. B 73 045432
[6] Fujita M, Wakabayashi K, Akada K and Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920
[7] Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954
[8] Yang L, Cohen M L and Louie S G 2008 Phys. Rev. Lett. 101 186401
[9] Wakayabashi K, Fujita M, Ajiki H and Sigrist M 1999 Phys. Rev. B 59 8271
[10] Wang Y, Yang S and Niu Q 2009 Phys. Rev. Lett. 102 096801
[11] Liu H, Hu B and Liu N 2016 Phys. Lett. A 380 3738
[12] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[13] Yang Y, Xu Z, Sheng L, Wang B G, Xing D Y and Sheng D N 2011 Phys. Rev. Lett. 107 066602
[14] Li H, Sheng L and Xing D Y 2012 Phys. Rev. Lett. 108 196806
[15] Li S 2014 Progress in Physics 34 1
[16] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[17] Knez I, Du R R and Sullivan G 2011 Phys. Rev. Lett. 107 136603
[18] Wang Z J, Weng H M, Wu Q S, Dai X and Fang Z 2013 Phys. Rev. B 88 125427
[19] Tang P, Yan B, Cao W, Wu S C, Felser C and Duan W 2014 Phys. Rev. B 89 041409(R)
[20] Murakami S 2006 Phys. Rev. Lett. 97 236805
[21] Weng H M, Dai X and Fang Z 2014 Phys. Rev. X 4 011002
[22] Wu R, Ma J Z, Nie S M, Zhao L X, Huang X, Yin J X, Fu B B, Richard P, Chen G F, Fang Z, Dai X, Weng H M, Qian T, Ding H and Pan S H 2016 Phys. Rev. X 6 021017
[23] Weng H M, Liang Y Y, Xu Q N, Yu R, Fang Z, Dai X and Kawazoe Y 2015 Phys. Rev. B 92 045108
[24] Kubo R 1957 J. Phys. Soc. Jpn. 12 570
[25] Nardelli M B 1999 Phys. Rev. B 60 7828
[26] Ferreira M S, Dargam T G, Muniz R B and Latge A 2000 Phys. Rev. B 62 16040
[27] Ferreira M S, Dargam T G, Muniz R B and Latge A 2001 Phys. Rev. B 63 245111
[28] Nardelli M B and Bernholc J 1999 Phys. Rev. B 60 16338
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[3] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[4] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[5] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[6] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[7] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[8] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
[9] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
[10] Low-voltage soft robots based on carbon nanotube/polymer electrothermal composites
Qi Wang(王琪), Ying-Qiong Yong(雍颖琼), and Zhi-Ming Bai(白智明). Chin. Phys. B, 2022, 31(12): 128801.
[11] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[12] A review of arc-discharge method towards large-scale preparation of long linear carbon chains
Yi-Fan Zhang(张一帆). Chin. Phys. B, 2022, 31(12): 125201.
[13] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[14] Robust and intrinsic type-III nodal points in a diamond-like lattice
Qing-Ya Cheng(程青亚), Yue-E Xie(谢月娥), Xiao-Hong Yan(颜晓红), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2022, 31(11): 117101.
[15] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
No Suggested Reading articles found!