Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 115205    DOI: 10.1088/1674-1056/26/11/115205
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Measurement of iron characteristics under ramp compression

H G Wei(魏会冈)1,2,3, E Brambrink2,3, N Amadou2,3,7, A Benuzzi-Mounaix2,3, A Ravasio2,3, G Morard4, F Guyot4, T de Rességuier5, N Ozaki6, K Miyanishi6, G Zhao(赵刚)1, M Koenig2,3
1. Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China;
2. LULI-CNRS, Ecole Polytechnique, CEA, Université Paris-Saclay, F-91128 Palaiseau cedex, France;
3. Sorbonne Universités, UPMC Univ Paris 06, CNRS, laboratoire d'utilisation des lasers intenses(LULI), place Jussieu, 75252 Paris cedex 05, France;
4. Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie(IMPMC), Sorbonne Universités-UPMC, UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD UMR 206, F-75005 Paris, France;
5. Institut Pprime, CNRS, ENSMA, Univ. Poitiers, 1 avenue Clément Ader, Futuroscope Cedex, 86961 France;
6. Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871 Japan;
7. Département de Physique, Université Abdou Moumouni de Niamey, BP. 10662 Niamey, Niger
Abstract  Laser-driven ramp compression was used to investigate iron characteristics along the isentropic path. The iterative Lagrangian analysis method was employed to analyze the free surface velocity profiles in iron stepped target measured with two VISARs. The onset stress for the α to ε phase transformation was determined from the sudden change in the sound velocity and was found over-pressurized compared to the static and shock results. The derived stress (26 GPa) and strain rate (up to 108 s-1) are consistent with our previous experimental results. The stress-density relations were compared with those from previous ramp experiments and good agreements were found, which experimentally confirms the simulations, showing that iterative Lagrangian analysis can be applied to the ramp-compression data with weak shock.
Keywords:  isentropic compression      iron      phase transformation  
Received:  20 April 2017      Revised:  02 August 2017      Accepted manuscript online: 
PACS:  52.50.Jm (Plasma production and heating by laser beams (laser-foil, laser-cluster, etc.))  
  91.35.Cb (Models of interior structure)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01503) and the National Natural Science Foundation of China (Grant No. 11103040).
Corresponding Authors:  E Brambrink, G Zhao, M Koenig     E-mail:  erik.brambrink@polytechnique.edu;gzhao@bao.ac.cn;michel.koenig@polytechnique.edu

Cite this article: 

H G Wei(魏会冈), E Brambrink, N Amadou, A Benuzzi-Mounaix, A Ravasio, G Morard, F Guyot, T de Rességuier, N Ozaki, K Miyanishi, G Zhao(赵刚), M Koenig Measurement of iron characteristics under ramp compression 2017 Chin. Phys. B 26 115205

[1] Swift D C, Eggert J H, Hicks D G, Hamel S, Caspersen K, Schwegler, E, Collins G W, Nettelmann N and Ackland G J 2012 Astrophys. J. 744 59
[2] Miguel Y, Guillot T and Fayon L 2016 Astron. Astrophys. 596 114
[3] Baraffe I, Chabrier G, Fortney J and Sotin C 2014 Protostars and Planets VI(Beuther H, Klessen R S, Dullemond C P and Henning T, Ed.)(Tucson:University of Arizona Press) p. 763
[4] Knudson M D, Hanson D L, Bailey J E, Hall C A and Asay J R 2003 Phys. Rev. Lett. 90 035505
[5] Bradley D K, Eggert J H, Smith R F, Prisbrey S T, Hicks D G, Braun D G, Biener J, Hamza A V, Rudd R E and Collins G W 2009 Phys. Rev. Lett. 102 075503
[6] Smith R F, Eggert J H, Jeanloz R, Duffy T S, Braun D G, Patterson J R, Rudd R E, Biener J, Lazicki A E, Hamza A V, Wang J, Braun T, Benedict L X, Celliers P M and Collins G W 2014 Nature 511 330
[7] Dubrovinsky L, Dubrovinskaia N, Bykova E, Bykov M, Prakapenka V, Prescher C, Glazyrin K, Liermann H P, Hanfland M, Ekholm M, Feng Q, Pourovskii L V, Katsnelson M I, Wills J M and Abrikosov I A 2015 Nature 525 226
[8] Edwards J, Lorenz K T, Remington B A, Pollaine S, Colvin J, Braun D, Lasinski B F, Reisman D, McNaney J M, Greenough J A, Wallace R, Louis H and Kalantar D 2004 Phys. Rev. Lett. 92 075002
[9] Smith R F, Minich R W, Rudd R E, Eggert J H, Bolme C A, Brygoo S L, Jones A M and Collins G W 2012 Phys. Rev. B 86 245204
[10] Bradley D K, Eggert J H, Smith R F, Prisbrey S T, Hicks D G, Braun D G, Biener J, Hamza A V, Rudd R E and Collins G W 2009 Phys. Rev. Lett. 102 075503
[11] Bastea M, Bastea S and Becker R 2009 Appl. Phys. Lett. 95 241911
[12] Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G and Collins G W 2008 Phys. Rev. Lett. 101 065701
[13] Morard G, Bouchet J, Valencia D, Mazevet S and Guyot F 2011 High Energy Density Phys. 7 141
[14] Bancroft D, Peterson E L and Minshall S 1956 J. Appl. Phys. 27 291
[15] Barker L M and Hollenbach R E 1974 J. Appl. Phys. 45 4872
[16] Boettger J C and Wallace D C 1997 Phys. Rev. B 55 2840
[17] Wang F M and Ingalls R 1998 Phys. Rev. B 57 5647
[18] Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D and Collins G W 2013 J. Appl. Phys. 114 223507
[19] Amadou N, Brambrink E, Benuzzi-Mounaix A, Huser G, Guyot F, Mazevet S, Morard G, de Resseguier T, Vinci T, Myanishi K, Ozaki N, Kodama R, Boehly T, Henry O, Raffestin D and Koenig M 2013 High Energy Density. Phys. 9 243
[20] Amadou N, de Resseguier T, Brambrink E, Vinci T, Benuzzi-Mounaix A, Huser G, Morard G, Guyot F, Miyanishi K, Ozaki N, Kodama R and Koenig M 2016 Phys. Rev. B. 93 214108
[21] Wang J, Smith R F, Eggert J H, Braun D G, Boehly T R, Reed P J, Celliers P M, Jeanloz R, Collins G W and Duffy T S 2013 J. Appl. Phys. 114 023513
[22] Lorenz K T, Edwards M J, Jankowski A F, Pollaine S M, Smith R F and Remington B A 2006 High Energy Density. Phys. 2 113
[23] Benuzzi-Mounaix A, Koenig M, Ravasio A, Vinci T, Ozaki N, Rabec le Gloahec M, Loupias B, Huser G, Henry E, Bouquet S, Michaut C, Hicks D, MacKinnon A, Patel P, Park H S, LePape S, Boehly T, Borghesi M, Cecchetti C, Notley M, Clark R, Bandyopadhyay S, Atzeni S, Schiavi A, Aglitskiy Y, Faenov A, Pikuz T, Batani D, Dezulian R and Tanaka K 2006 Plasma Phys. Control. Fusion 48 347
[24] Swift D C and Johnson R P 2005 Phys. Rev. E 71 066401
[25] Swift D C, Kraus R G, Loomis E N, Hicks D G, McNaney J M and Johnson R P 2008 Phys. Rev. E 78 066115
[26] Brambrink E, Amadou N, Benuzzi-Mounaix A, Geissel M, Harmand M, Pelka A, Vinci T and Koenig M 2015 Contrib. Plasma Phys. 55 67
[27] Amadou N, Brambrink E, de Resseguier T, Manga A O, Aboubacar A, Borm B and Molineri A 2016 Metals 6 320
[28] Taylor J W 1965 J. Appl. Phys. 36 3146
[29] Rothman S D and Maw J 2006 J. Phys. IV 134 745
[30] Fratanduono D E, Smith R F, Braun D G, Patterson J R, Kraus R G, Perry T S, Arsenlis A, Collins G W and Eggert J H 2015 J. Appl. Phys. 117 245903
[31] SESAME, The LANL Equation of State Database, Tech. Rep. LA-UR-92-3407, LANL, 1992
[32] Smith R F, Minich R W, Rudd R E, Eggert J H, Bolme C A, Brygoo S L, Jones A M and Collins G W 2012 Phys. Rev. B 86 245204
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[3] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[4] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[5] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[6] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[7] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[8] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[9] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[10] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
[11] Observation of nonlinearity and heating-induced frequency shifts in cavity magnonics
Wei-Jiang Wu(吴维江), Da Xu(徐达), Jie Qian(钱洁), Jie Li(李杰), Yi-Pu Wang(王逸璞), and Jian-Qiang You(游建强). Chin. Phys. B, 2022, 31(12): 127503.
[12] Solid-to-molecular-orientational-hexatic melting induced by local environment determined defect proliferations
Zhanglin Hou(侯章林), Jieli Wang(王杰利), Ying Zeng(曾颖), Zhiyuan Zhao(赵志远), Xing Huang(黄兴), Kun Zhao(赵坤), and Fangfu Ye(叶方富). Chin. Phys. B, 2022, 31(12): 126401.
[13] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[14] Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2021, 30(9): 097403.
[15] Nonlinear dynamics of cell migration in anisotropic microenvironment
Yanping Liu(刘艳平), Da He(何达), Yang Jiao(焦阳), Guoqiang Li(李国强), Yu Zheng(郑钰), Qihui Fan(樊琪慧), Gao Wang(王高), Jingru Yao(姚静如), Guo Chen(陈果), Silong Lou(娄四龙), and Liyu Liu(刘雳宇). Chin. Phys. B, 2021, 30(9): 090505.
No Suggested Reading articles found!