Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 116102    DOI: 10.1088/1674-1056/26/11/116102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Slip on the surface of silicon wafers under laser irradiation:Scale effect

Zhi-Chao Jia(贾志超)1,2, Ze-Wen Li(李泽文)1,2, Jie Zhou(周洁)1,2, Xiao-Wu Ni(倪晓武)1,2
1. School of Science, Nanjing University of Science & Technology, Nanjing 210094, China;
2. Advanced Launching Co-innovation Center, Nanjing University of Science & Technology, Nanjing 210094, China
Abstract  The slip mechanism on the surface of silicon wafers under laser irradiation was studied by numerical simulations and experiments. Firstly, the slip was explained by an analysis of the generalized stacking fault energy and the associated restoring forces. Activation of unexpected {110} slip planes was predicted to be a surface phenomenon. Experimentally, {110} slip planes were activated by changing doping concentrations of wafers and laser parameters respectively. Slip planes were {110} when slipping started within several atomic layers under the surface and turned into {111} with deeper slip. The scale effect was shown to be an intrinsic property of silicon.
Keywords:  slip      silicon      laser      scale effect  
Received:  05 May 2017      Revised:  18 August 2017      Accepted manuscript online: 
PACS:  61.82.Fk (Semiconductors)  
  61.80.Ba (Ultraviolet, visible, and infrared radiation effects (including laser radiation))  
  61.80.-x (Physical radiation effects, radiation damage)  
  52.38.Mf (Laser ablation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61605079).
Corresponding Authors:  Xiao-Wu Ni     E-mail:  nxw@njust.edu.cn

Cite this article: 

Zhi-Chao Jia(贾志超), Ze-Wen Li(李泽文), Jie Zhou(周洁), Xiao-Wu Ni(倪晓武) Slip on the surface of silicon wafers under laser irradiation:Scale effect 2017 Chin. Phys. B 26 116102

[1] Cheng G J and Shehadeh M A 2005 Scr. Mater. 53 1013
[2] Lu Y F, Zheng Y W and Song W D 2000 J. Appl. Phys. 87 1534
[3] Tao S, Zhou Y, Wu B and Gao Y 2012 Appl. Surf. Sci. 258 7766
[4] Han J H, Luo L, Zhang Y B, Hu R F and Feng G Y 2016 Chin. Phys. B 25 423
[5] Tao H Y, Chen R, Song X W, Chen Y N and Lin J Q 2017 Acta Phys. Sin. 66 67902(in Chinese)
[6] Wang X, Shen Z H, Lu J and Ni X W 2010 J. Appl. Phys. 108 033103
[7] Wang X, Zhu D H, Shen Z H, Lu J and Ni X W 2010 Appl. Surf. Sci. 257 1583
[8] Fu Z, Wu B, Gao Y, Zhou Y and Yu C 2011 Appl. Surf. Sci. 33 2092
[9] Liu J, Lu J, Ni X W, Dai G and Zhang L 2010 Chin. Opt. Lett. 8 1000
[10] Wang X, Qin Y, Wang B, Zhang L, Shen Z H, Lu J and Ni X W 2011 Appl. Opt. 50 3725
[11] Choi S and Jhang K Y 2014 Opt. Eng. 53 017103
[12] Jia Z C, Li Z W, Lv X M and Ni X W 2017 Appl. Opt. 56 4900
[13] Gerbig Y B, Stranick S J and Cook R F 2011 Phys. Rev. B. 83 205209
[14] Xu L M, Gao C, Dong P, Zhao J J, Ma X Y and Yang D R 2013 Acta Phys. Sin. 62 411(in Chinese)
[15] Fischer A, Richter H, Shalynin A, Krottenthaler P, Obermeier G, Lambert U and Wahlich R 2001 Microelectron. Eng. 56 117
[16] Garagorri J, Reyes Elizalde M, Fossati M C, Jacques D and Tanner B K 2012 J. Appl. Phys. 111 094901
[17] Choi S and Jhang K Y 2014 Appl. Phys. Lett. 104 251604
[18] Deng G, Feng G, Liu K and Zhou S 2014 Appl. Opt. 53 3004
[19] http://www.icmab.es/siesta/2017
[20] Guénolé J, Brochard S and Godet J 2011 Acta Mater. 59 7464
[21] Schmid P E 1981 Phys. Rev. B. 23 5531
[22] Choi S and Jhang K Y 2014 Opt. Lett. 39 4278
[23] Bisognin G, De S D, Napolitani E, Berti M, Carnera A, Mirabella S, Romano L, Grimaldi M G and Priolo F 2007 J. Appl. Phys. 101 093523
[24] Albrecht M, Strunk H P, Hull R and Bonar J M 1993 Appl. Phys. Lett. 62 2206
[1] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[2] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[3] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[4] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[5] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[6] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[7] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[8] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[9] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[10] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[11] Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60
Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩). Chin. Phys. B, 2023, 32(2): 024203.
[12] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[13] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[14] Optomagnonically tunable whispering gallery cavity laser wavelength conversion
Yining Zhu(朱奕宁), Zixu Zhu(朱子虚), Anbang Pei(裴安邦), and Yong-Pan Gao(高永潘). Chin. Phys. B, 2023, 32(2): 024206.
[15] Estimation of far-field wavefront error of tilt-to-length distortion coupling in space-based gravitational wave detection
Ya-Zheng Tao(陶雅正), Hong-Bo Jin(金洪波), and Yue-Liang Wu(吴岳良). Chin. Phys. B, 2023, 32(2): 024212.
No Suggested Reading articles found!