Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 117101    DOI: 10.1088/1674-1056/ac7c00
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Robust and intrinsic type-III nodal points in a diamond-like lattice

Qing-Ya Cheng(程青亚)1,2, Yue-E Xie(谢月娥)1,2,†, Xiao-Hong Yan(颜晓红)2, and Yuan-Ping Chen(陈元平)1,2,‡
1 School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China;
2 School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
Abstract  An ideal type-III nodal point is generated by crossing a completely flat band and a dispersive band along a certain momentum direction. To date, the type-III nodal points found in two-dimensional (2D) materials have been mostly accidental and random rather than ideal cases, and no one mentions what kind of lattice can produce ideal nodal points. Here, we propose that ideal type-III nodal points can be obtained in a diamond-like lattice. The flat bands in the lattice originate from destructive interference of wavefunctions, and thus are intrinsic and robust. Moreover, the specific lattice can be realized in some 2D carbon networks, such as T-graphene and its derivatives. All the carbon structures possess type-III Dirac points. In two of the structures, consisting of triangular carbon rings, the type-III Dirac points are located just on the Fermi level and the Fermi surface is very clean. Our research not only opens a door to finding the ideal type-III Dirac points, but also provides 2D materials for exploring their physical properties experimentally.
Keywords:  diamond-like lattice      carbon materials      type-III Dirac points  
Received:  11 May 2022      Revised:  19 June 2022      Accepted manuscript online:  27 June 2022
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174157, 12074150, and 11874314).
Corresponding Authors:  Yue-E Xie, Yuan-Ping Chen     E-mail:  Yueex@ujs.edu.cn;Chenyp@ujs.edu.cn

Cite this article: 

Qing-Ya Cheng(程青亚), Yue-E Xie(谢月娥), Xiao-Hong Yan(颜晓红), and Yuan-Ping Chen(陈元平) Robust and intrinsic type-III nodal points in a diamond-like lattice 2022 Chin. Phys. B 31 117101

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[2] Geim A K 2009 Science 324 1530
[3] Abanin D A, Morozov S V and Ponomarenko L A, et al. 2011 Science 332 328
[4] Samaddar S, Yudhistira I, Adam S, Courtois H and Winkelmann C B 2016 Phys. Rev. Lett. 116 126804
[5] Jalali M Z and Jafari S A 2018 Phys. Rev. B 98 195415
[6] Kim J, Yu S and Park N 2020 Phys. Rev. Appl. 13 044015
[7] Xie Y, Kang Y, Li S, Yan X and Chen Y 2021 Appl. Phys. Lett. 118 193101
[8] Gao Y, Chen Y, Xie Y, Chang P Y, Cohen M L and Zhang S 2018 Phys. Rev. B 97 121108
[9] Jin L, Wu H C, Wei B B and Song Z 2020 Phys. Rev. B 101 045130
[10] Jin L, Zhang X, Liu Y, Dai X, Wang L and Liu G 2020 Phys. Rev. B 102 195104
[11] Fragkos S, Tsipas P, Xenogiannopoulou E, Panayiotatos Y and Dimoulas A 2021 J. Appl. Phys. 129 075104
[12] Sims C 2021 Condens. Matter 6 18
[13] Mili?evi? M, Montambaux G, Ozawa T, et al. 2019 Phys. Rev. X 9 031010
[14] Buscema M, Groenendijk D J, Blanter S I, Steele G A, Zant H S J and Castellanos G A 2014 Nano Lett. 14 3347
[15] Yu H, Liu G B, Gong P, Xu X and Yao W 2014 Nat. Commun. 5 3876
[16] Liu H, Sun J T, Cheng C, Liu F and Meng S 2018 Phys. Rev. Lett. 120 237403
[17] Li D, Rosenstein B, Shapiro B Y and Shapiro I 2017 Phys. Rev. B 95 094513
[18] Aggarwal L, Gayen S, Das S, Kumar R, Sü? V, Felser C, Shekhar C and Sheet G 2017 Nat. Commun. 8 13974
[19] Baboux F, Ge L, Jacqmin T, et al. 2016 Phys. Rev. Lett. 116 066402
[20] Julku A, Peotta S, Vanhala T I, Kim D H and Törmä P 2016 Phys. Rev. Lett. 117 045303
[21] Zyuzin A A and Zyuzin A Y 2018 Phys. Rev. B 97 041203
[22] Mizoguchi T and Udagawa M 2019 Phys. Rev. B 99 235118
[23] Yin J X, Zhang S S, Chang G, et al. 2019 Nat. Phys. 15 443
[24] Huang H, Jin K H and Liu F 2018 Phys. Rev. B 98 121110
[25] Su C, Jiang H and Feng J 2013 Phys. Rev. B 87 075453
[26] Gong Z, Shi X, Li J, Li S, He C, Ouyang T, Zhang C, Tang C and Zhong J 2020 Phys. Rev. B 101 155427
[27] Zhang H, Xie Y, Zhang Z, Zhong C, Li Y, Chen Z and Chen Y 2017 J. Phys. Chem. Lett. 8 1707
[28] Kong W, Wang R, Xiao X, Zhan F, Gan L Y, Wei J, Fan J and Wu X 2021 J. Phys. Chem. Lett. 12 10874
[29] Shao X, Liu X, Zhao X, Wang J, Zhang X and Zhao M 2018 Phys. Rev. B 98 085437
[30] Vicencio R A and Johansson M 2013 Phys. Rev. A 87 061803
[31] Vicencio R A, Cantillano C, Morales I L, Real B, Mejía C C, Weimann S, Szameit A and Molina M I 2015 Phys. Rev. Lett. 114 245503
[32] Zhang S, Kang M, Huang H, et al. 2019 Phys. Rev. B 99 100404
[33] Yamada M G, Soejima T, Tsuji N, Hirai D, Dinc? M and Aoki H 2016 Phys. Rev. B 94 081102
[34] Zhang S M and Jin L 2019 Phys. Rev. A 100 043808
[35] Wang J and Quek S Y 2020 Nanoscale 12 20279
[36] Li S, Xie Y and Chen Y 2021 Phys. Rev. B 104 085127
[37] Liu D, Feng P, Gao M and Yan X W 2021 Phys. Rev. B 103 155411
[38] Kobayashi K, Okumura M, Yamada S, Machida M and Aoki H 2016 Phys. Rev. B 94 214501
[39] Pelegrí G, Marques A M, Dias R G, Daley A J, Ahufinger V and Mompart J 2019 Phys. Rev. A 99 023612
[40] Flach S, Leykam D, Bodyfelt J D, Matthies P and Desyatnikov A S 2014 Europhys. Lett. 105 30001
[41] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[42] Ernzerhof M and Scuseria G E 1999 J. Chem. Phys. 110 5029
[43] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[44] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[45] Wu Q, Zhang S, Song H F, Troyer M and Soluyanov A A 2018 Comput Phys Commun 224 405
[46] Chen Y, Xu S, Xie Y, Zhong C, Wu C and Zhang S B 2018 Phys. Rev. B 98 035135
[47] Morresi T, Pedrielli A, Beccara S a, Gabbrielli R, Pugno N M and Taioli S 2020 Carbon 159 512
[48] Fan Q, Yan L, Tripp Matthias W, et al. 2021 Science 372 852
[49] Zhu Z B, Wei Y and Shi M 2011 Chem. Soc. Rev. 40 5534
[50] de Meijere A, Kozhushkov S I and Schill H 2006 Chem. Rev. 106 4926
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[7] Magnetic ground state of plutonium dioxide: DFT+U calculations
Yue-Fei Hou(侯跃飞), Wei Jiang(江伟), Shu-Jing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2023, 32(2): 027103.
[8] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
[9] Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure
Yuan Gao(高源), Huiping Li(李慧平), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(10): 107304.
[10] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
[11] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[12] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[13] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[14] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[15] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
No Suggested Reading articles found!