CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Robust and intrinsic type-III nodal points in a diamond-like lattice |
Qing-Ya Cheng(程青亚)1,2, Yue-E Xie(谢月娥)1,2,†, Xiao-Hong Yan(颜晓红)2, and Yuan-Ping Chen(陈元平)1,2,‡ |
1 School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China; 2 School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China |
|
|
Abstract An ideal type-III nodal point is generated by crossing a completely flat band and a dispersive band along a certain momentum direction. To date, the type-III nodal points found in two-dimensional (2D) materials have been mostly accidental and random rather than ideal cases, and no one mentions what kind of lattice can produce ideal nodal points. Here, we propose that ideal type-III nodal points can be obtained in a diamond-like lattice. The flat bands in the lattice originate from destructive interference of wavefunctions, and thus are intrinsic and robust. Moreover, the specific lattice can be realized in some 2D carbon networks, such as T-graphene and its derivatives. All the carbon structures possess type-III Dirac points. In two of the structures, consisting of triangular carbon rings, the type-III Dirac points are located just on the Fermi level and the Fermi surface is very clean. Our research not only opens a door to finding the ideal type-III Dirac points, but also provides 2D materials for exploring their physical properties experimentally.
|
Received: 11 May 2022
Revised: 19 June 2022
Accepted manuscript online: 27 June 2022
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174157, 12074150, and 11874314). |
Corresponding Authors:
Yue-E Xie, Yuan-Ping Chen
E-mail: Yueex@ujs.edu.cn;Chenyp@ujs.edu.cn
|
Cite this article:
Qing-Ya Cheng(程青亚), Yue-E Xie(谢月娥), Xiao-Hong Yan(颜晓红), and Yuan-Ping Chen(陈元平) Robust and intrinsic type-III nodal points in a diamond-like lattice 2022 Chin. Phys. B 31 117101
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 [2] Geim A K 2009 Science 324 1530 [3] Abanin D A, Morozov S V and Ponomarenko L A, et al. 2011 Science 332 328 [4] Samaddar S, Yudhistira I, Adam S, Courtois H and Winkelmann C B 2016 Phys. Rev. Lett. 116 126804 [5] Jalali M Z and Jafari S A 2018 Phys. Rev. B 98 195415 [6] Kim J, Yu S and Park N 2020 Phys. Rev. Appl. 13 044015 [7] Xie Y, Kang Y, Li S, Yan X and Chen Y 2021 Appl. Phys. Lett. 118 193101 [8] Gao Y, Chen Y, Xie Y, Chang P Y, Cohen M L and Zhang S 2018 Phys. Rev. B 97 121108 [9] Jin L, Wu H C, Wei B B and Song Z 2020 Phys. Rev. B 101 045130 [10] Jin L, Zhang X, Liu Y, Dai X, Wang L and Liu G 2020 Phys. Rev. B 102 195104 [11] Fragkos S, Tsipas P, Xenogiannopoulou E, Panayiotatos Y and Dimoulas A 2021 J. Appl. Phys. 129 075104 [12] Sims C 2021 Condens. Matter 6 18 [13] Mili?evi? M, Montambaux G, Ozawa T, et al. 2019 Phys. Rev. X 9 031010 [14] Buscema M, Groenendijk D J, Blanter S I, Steele G A, Zant H S J and Castellanos G A 2014 Nano Lett. 14 3347 [15] Yu H, Liu G B, Gong P, Xu X and Yao W 2014 Nat. Commun. 5 3876 [16] Liu H, Sun J T, Cheng C, Liu F and Meng S 2018 Phys. Rev. Lett. 120 237403 [17] Li D, Rosenstein B, Shapiro B Y and Shapiro I 2017 Phys. Rev. B 95 094513 [18] Aggarwal L, Gayen S, Das S, Kumar R, Sü? V, Felser C, Shekhar C and Sheet G 2017 Nat. Commun. 8 13974 [19] Baboux F, Ge L, Jacqmin T, et al. 2016 Phys. Rev. Lett. 116 066402 [20] Julku A, Peotta S, Vanhala T I, Kim D H and Törmä P 2016 Phys. Rev. Lett. 117 045303 [21] Zyuzin A A and Zyuzin A Y 2018 Phys. Rev. B 97 041203 [22] Mizoguchi T and Udagawa M 2019 Phys. Rev. B 99 235118 [23] Yin J X, Zhang S S, Chang G, et al. 2019 Nat. Phys. 15 443 [24] Huang H, Jin K H and Liu F 2018 Phys. Rev. B 98 121110 [25] Su C, Jiang H and Feng J 2013 Phys. Rev. B 87 075453 [26] Gong Z, Shi X, Li J, Li S, He C, Ouyang T, Zhang C, Tang C and Zhong J 2020 Phys. Rev. B 101 155427 [27] Zhang H, Xie Y, Zhang Z, Zhong C, Li Y, Chen Z and Chen Y 2017 J. Phys. Chem. Lett. 8 1707 [28] Kong W, Wang R, Xiao X, Zhan F, Gan L Y, Wei J, Fan J and Wu X 2021 J. Phys. Chem. Lett. 12 10874 [29] Shao X, Liu X, Zhao X, Wang J, Zhang X and Zhao M 2018 Phys. Rev. B 98 085437 [30] Vicencio R A and Johansson M 2013 Phys. Rev. A 87 061803 [31] Vicencio R A, Cantillano C, Morales I L, Real B, Mejía C C, Weimann S, Szameit A and Molina M I 2015 Phys. Rev. Lett. 114 245503 [32] Zhang S, Kang M, Huang H, et al. 2019 Phys. Rev. B 99 100404 [33] Yamada M G, Soejima T, Tsuji N, Hirai D, Dinc? M and Aoki H 2016 Phys. Rev. B 94 081102 [34] Zhang S M and Jin L 2019 Phys. Rev. A 100 043808 [35] Wang J and Quek S Y 2020 Nanoscale 12 20279 [36] Li S, Xie Y and Chen Y 2021 Phys. Rev. B 104 085127 [37] Liu D, Feng P, Gao M and Yan X W 2021 Phys. Rev. B 103 155411 [38] Kobayashi K, Okumura M, Yamada S, Machida M and Aoki H 2016 Phys. Rev. B 94 214501 [39] Pelegrí G, Marques A M, Dias R G, Daley A J, Ahufinger V and Mompart J 2019 Phys. Rev. A 99 023612 [40] Flach S, Leykam D, Bodyfelt J D, Matthies P and Desyatnikov A S 2014 Europhys. Lett. 105 30001 [41] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [42] Ernzerhof M and Scuseria G E 1999 J. Chem. Phys. 110 5029 [43] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [44] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 [45] Wu Q, Zhang S, Song H F, Troyer M and Soluyanov A A 2018 Comput Phys Commun 224 405 [46] Chen Y, Xu S, Xie Y, Zhong C, Wu C and Zhang S B 2018 Phys. Rev. B 98 035135 [47] Morresi T, Pedrielli A, Beccara S a, Gabbrielli R, Pugno N M and Taioli S 2020 Carbon 159 512 [48] Fan Q, Yan L, Tripp Matthias W, et al. 2021 Science 372 852 [49] Zhu Z B, Wei Y and Shi M 2011 Chem. Soc. Rev. 40 5534 [50] de Meijere A, Kozhushkov S I and Schill H 2006 Chem. Rev. 106 4926 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|