Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 027304    DOI: 10.1088/1674-1056/ac34ff
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system

Cheng-Zhi Ye(叶成芝)1, Lan-Yun Zhang(张蓝云)2, and Hai-Bin Xue(薛海斌)2,†
1 School of Physics and Electronic Engineering, Linyi University, Linyi 276005, China;
2 Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
Abstract  In the ring-shaped Su-Schrieffer-Heeger (SSH) double-chain, the quantum interference between the two different electron tunneling paths of the upper and lower chains has an important influence on the electron transport properties of non-trivial topological edge states. Here, we have studied the electron transport signatures of non-trivial topological edge states in a ring-shaped SSH double-chain system based on the wave-guide theory and transfer-matrix method. In the ring-shaped SSH double-chain with the upper chain being different from the lower one, it is demonstrated that the electron transmission probability displays the four and two resonance peaks associated with the non-trivial topological edge states in the weak and strong coupling regimes, respectively. Whereas in the case of the upper chain being the same as the lower one, the two transmission resonance peaks associated with the non-trivial topological edge states in the weak coupling regime are only found, and that in the strong coupling regime disappear that originated from the destructive interference between the two different electron tunneling paths of the upper and lower chains. Consequently, the variation of the number of transmission resonance peaks associated with the non-trivial topological edge states in the weak and strong coupling regimes suggests that an alternative scheme for detecting non-trivial topological edge states in the ring-shaped SSH double-chain system.
Keywords:  ring-shaped Su-Schrieffer-Heeger double-chain      non-trivial topological edge states      transmission probability  
Received:  17 August 2021      Revised:  08 October 2021      Accepted manuscript online:  01 November 2021
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  73.20.-r (Electron states at surfaces and interfaces)  
  71.23.An (Theories and models; localized states)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974153), the Natural Science Foundation of Shanxi Province, China (Grant No. 20210302123184), the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi Province, China (Grant No. 163220120-S), and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2020MA091).
Corresponding Authors:  Hai-Bin Xue     E-mail:  xuehaibin@tyut.edu.cn

Cite this article: 

Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌) Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system 2022 Chin. Phys. B 31 027304

[1] Moore J E 2010 Nature 464 194
[2] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[3] Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698
[4] Naz E S G, Fulga I C, Ma L, Schmidt O G and van den Brink J 2018 Phys. Rev. A 98 033830
[5] Whittaker C E, Cancellieri E, Walker P M, Royall B, Rodriguez L E T, Clarke E, Whittaker D M, Schomerus H, Skolnick M S and Krizhanovskii D N 2019 Phys. Rev. B 99 081402
[6] Wang Y, Lu Y H, Mei F, Gao J, Li Z M, Tang H, Zhu S L, Jia S and Jin X M 2019 Phys. Rev. Lett. 122 193903
[7] Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E and Bloch I 2013 Nat. Phys. 9 795
[8] Drost R, Ojanen T, Harju A and Liljeroth P 2017 Nat. Phys. 13 668
[9] Huda M N, Kezilebieke S, Ojanen T, Drost R and Liljeroth P 2020 npj Quantum Mater. 5 17
[10] Parto M, Wittek S, Hodaei H, Harari G, Bandres M A, Ren J, Rechtsman M C, Segev M, Christodoulides D N and Khajavikhan M 2018 Phys. Rev. Lett. 120 113901
[11] Ryu S and Hatsugai Y 2002 Phys. Rev. Lett. 89 077002
[12] Hafezi M 2014 Phys. Rev. Lett. 112 210405
[13] Li L, Xu Z and Chen S 2014 Phys. Rev. B 89 085111
[14] Poshakinskiy A V, Poddubny A N and Hafezi M 2015 Phys. Rev. A 91 043830
[15] Marques A M and Dias R G 2017 Phys. Rev. B 95 115443
[16] Li C, Lin S, Zhang G and Song Z 2017 Phys. Rev. B 96 125418
[17] Padavić K, Hegde S S, DeGottardi W and Vishveshwara S 2018 Phys. Rev. B 98 024205
[18] Li C F, Li X P and Wang L C 2018 Europhys. Lett. 124 37003
[19] Lu M X and Deng W J 2019 Acta Phys. Sin. 68 120301 (in Chinese)
[20] Lü X L and Xie H 2019 J. Phys.:Condens. Matter 31 495401
[21] Pérez-González B, Bello M, Platero G and Gómez-León Á 2019 Phys. Rev. Lett. 123 126401
[22] Du L, Wu J H, Artoni M and Rocca G C L 2019 Phys. Rev. A 100 012112
[23] Simon D S, Osawa S and Sergienko A V 2019 J. Phys.:Condens. Matter 31 045001
[24] Benito M, Niklas M, Platero G and Kohler S 2016 Phys. Rev. B 93 115432
[25] Balabanov O and Johannesson H 2020 J. Phys.:Condens. Matter 32 015503
[26] Dong B and Lei X L 2018 Ann. Physics 396 245
[27] Niklas M, Benito M, Kohler S and Platero G 2016 Nanotechnology 27 454002
[28] Böhling S, Engelhardt G, Platero G and Schaller G 2018 Phys. Rev. B 98 035132
[29] Zhang L Y, Xue H B, Chen B, Chen J B and Xing L L 2020 Acta Phys. Sin. 69 077301 (in Chinese)
[30] Xue H B, Duan Z L, Chen B, Chen J B and Xing L L 2021 Acta Phys. Sin. 70 087301 (in Chinese)
[31] Bartolo T C, Smith J S, Muralidharan B, Müller C, Stace T M and Cole J H 2020 Phys. Rev. Research 2 043430
[32] Gou W, Chen T, Xie D, Xiao T, Deng T S, Gadway B, Yi W and Yan B 2020 Phys. Rev. Lett. 124 070402
[33] Haug T, Dumke R, Kwek L C and Amico L 2019 Commun. Phys. 2 127
[34] Marques A M and Dias R G 2018 J. Phys.:Condens. Matter 30 305601
[35] Xue H B, Zhang H Y, Nie Y H, Li Z J and Liang J Q 2010 Chin. Phys. B 19 047303
[36] Chakrabarti A, Römer R A and Schreiber M 2003 Phys. Rev. B 68 195417
[37] Asbóth J K, Oroszlány L and Pályi A 2016 A Short Course on Topological Insulators (Budapest:Springer)
[1] Transport properties through double-magnetic-barrier structures in graphene
Wang Su-Xin(王素新), Li Zhi-Wen(李志文), Liu Jian-Jun(刘建军), and Li Yu-Xian(李玉现). Chin. Phys. B, 2011, 20(7): 077305.
[2] Influence of time-periodic potentials on electronic transport in double-well structure
Li Chun-Lei(李春雷) and Xu Yan(徐燕). Chin. Phys. B, 2010, 19(5): 057202.
[3] Lifetime of resonant state in a spherical quantum dot
Li Chun-Lei(李春雷) and Xiao Jing-Lin(肖景林). Chin. Phys. B, 2007, 16(1): 67-71.
[4] Conductance of three-terminal molecular bridge based on tight-binding theory
Wang Li-Guang (王利光), Li Yong (李勇), Yu Ding-Wen (郁鼎文), Tagami Katsunori, Tsukada Masaru. Chin. Phys. B, 2005, 14(5): 1011-1014.
No Suggested Reading articles found!