ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity |
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波)†, Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印) |
School of Science, Xuchang University, Xuchang 461000, China |
|
|
Abstract Non-Hermitian dissipation dynamics, capable of turning the conventionally detrimental decoherence effects to useful resources for state engineering, is highly attractive to quantum information processing. In this work, an effective scheme is developed for implementing fast population transfer with a superconducting qutrit via the non-Hermitian shortcut to adiabaticity (STA). We first deal with a Λ-configuration interaction between the qutrit and microwave drivings, in which the dephasing-assisted qubit state inversion requiring an overlarge dephasing rate is constructed non-adiabatically. After introducing a feasible ancillary driving that directly acts upon the qubit states, the target state transfer can be well realized but with an accessible qubit dephasing rate. Moreover, a high fidelity could be numerically obtained in the considered system. The strategy could provide a new route towards the non-Hermitian shortcut operations on superconducting quantum circuits.
|
Received: 01 June 2022
Revised: 17 July 2022
Accepted manuscript online: 12 August 2022
|
PACS:
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
32.80.Xx
|
(Level crossing and optical pumping)
|
|
85.25.-j
|
(Superconducting devices)
|
|
Fund: This work was supported by the Natural Science Foundation of Henan Province (Grant Nos. 212300410388 and 212300410238), the Scientific Research Innovation Team of Xuchang University (Grant No. 2022CXTD005), the National Scientific Research Project Cultivation Fund of Xuchang University (Grant No. 2022GJPY001), the Key Research Project in Universities of Henan Province (Grant No. 23B140010), and the "316" Project Plan of Xuchang University. |
Corresponding Authors:
Zhi-Bo Feng
E-mail: zbfeng010@163.com
|
Cite this article:
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印) Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity 2023 Chin. Phys. B 32 034201
|
[1] Steane A 1998 Rep. Prog. Phys. 61 117 [2] Bennett C H and DiVincenzo D P 2000 Nature 247 404 [3] Galindo A and Martín-Delgado M A 2002 Rev. Mod. Phys. 74 347 [4] Spiller T P, Munro W J, Barrett S D and Kok P 2005 Contemp. Phys. 46 407 [5] Hewitt-Horsman C 2009 Found. Phys. 39 869 [6] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and ÓBrien J L 2010 Nature 464 45 [7] Clarke J and Wilhelm F K 2008 Nature 453 1031 [8] Wendin G 2017 Rep. Prog. Phys. 80 106001 [9] Kang Y H, Chen Y H, Shi Z C, Huang B H, Song J and Xia Y 2017 Phys. Rev. A 96 022304 [10] Liu W Y, Zheng D N and Zhao S P 2018 Chin. Phys. B 27 027401 [11] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S and Oliver W D 2019 Appl. Phys. Rev. 6 021318 [12] Huang H L, Wu D, Fan D and Zhu X 2020 Sci. China Inform. Sci. 63 180501 [13] He K, Geng X, Huang R, Liu J and Chen W 2021 Chin. Phys. B 30 080304 [14] Kerman A J and Oliver W D 2008 Phys. Rev. Lett. 101 070501 [15] Huang S Y and Goan H S 2014 Phys. Rev. A 90 012318 [16] Rol M A, Battistel F, Malinowski F K, Bultink C C, Tarasinski B M, Vollmer R, Haider N, Muthusubramanian N, Bruno A, Terhal B M and DiCarlo L 2019 Phys. Rev. Lett. 123 120502 [17] Li S, Castellano A D, Wang S, Wu Y, Gong M, Yan Z, Rong H, Deng H, Zha C, Guo C, Sun L, Peng C, Zhu X and Pan J W 2019 npj Quantum Inform. 5 84 [18] Xu Y, Chu J, Yuan J, Qiu J, Zhou Y, Zhang L, Tan X, Yu Y, Liu S, Li J, Yan F and Yu D 2020 Phys. Rev. Lett. 125 240503 [19] Gúery-Odelin D, Ruschhaupt A, Kiely A, Torrontegui E, Martínez-Garaot S and Muga J G 2019 Rev. Mod. Phys. 91 045001 [20] Ma L, Kang Y H, Shi Z C, Song J and Y Xia 2018 Quantum Inf. Process. 17 292 [21] Kang Y H, Shi Z C, Huang B H, Song J and Xia Y 2020 Phys. Rev. A 101 032322 [22] Zhang J, Kyaw T H, Tong D M, Sjöqvist E and Kwek L C 2015 Sci. Rep. 5 18414 [23] Yu L, Xu J, Wu J L and Ji X 2017 Chin. Phys. B 26 060306 [24] Xu J, Yu L, Wu J L and Ji X 2017 Chin. Phys. B 26 090301 [25] Zhang Z, Wang T, Xiang L, Yao J, Wu J and Yin Y 2017 Phys. Rev. A 95 042345 [26] Feng Z B, Lu X J, Li M, Yan R Y and Zhou Y Q 2017 New J. Phys. 19 123023 [27] Chen Y H, Shi Z C, Song J, Xia Y and Zheng S B 2018 Ann. Phys. (Berlin) 530 1700351 [28] Wang T, Zhang Z, Xiang L, Jia Z, Duan P, Cai W, Gong Z, Zong Z, Wu M, Wu J, Sun L, Yin Y and Guo G 2018 New J. Phys. 20 065003 [29] Yan T, Liu B J, Xu K, Song C, Liu S, Zhang Z, Deng H, Yan Z, Rong H, Huang K, Yung M H, Chen Y and Yu D 2019 Phys. Rev. Lett. 122 080501 [30] Ma L, Kang Y H, Shi Z C, Huang B H, Song J and Xia Y 2019 Quantum Inf. Process. 18 65 [31] Chu J, Li D, Yang X, Song S, Han Z, Yang Z, Dong Y, Zheng W, Wang Z, Yu X, Lan D, Tan X and Yu Y 2020 Phys. Rev. Appl. 13 064012 [32] Wang X M, Zhang A Q, Xu P and Zhao S M 2021 Chin. Phys. B 30 030307 [33] Dong X P, Lu X J, Li M, Zhao Z Y and Feng Z B 2021 Chin. Phys. B 30 044214 [34] Zhao Z Y, Yan R Y and Feng Z B 2021 Chin. Phys. B 30 088501 [35] Ibáñez S, Martínez-Garaot S, Chen X, Torrontegui E and Muga J G 2011 Phys. Rev. A 84 023415 [36] Li H, Shen H Z, Wu S L and Yi X X 2017 Opt. Express 25 30135 [37] Chen Y H, Wu Q C, Huang B H, Song J, Xia Y and Zheng S B 2018 Ann. Phys. (Berlin) 530 1700247 [38] Ramos B F, Pedrosa I A and Lopes de Lima A 2018 Eur. Phys. J. Plus 133 449 [39] Torosov B T, Valle G D and Longhi S 2013 Phys. Rev. A 87 052502 [40] Torosov B T, Valle G D and Longhi S 2014 Phys. Rev. A 89 063412 [41] Li G Q, Chen G D, Peng P and Qi W 2017 Eur. Phys. J. D 71 14 [42] Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H 2002 Science 296 886 [43] Feng Z B, Lu X J, Yan R Y and Zhao Z Y 2018 Sci. Rep. 8 9310 [44] Zhang J L, Yan R Y, Lu X J and Feng Z B 2021 Opt. Commun. 497 127196 [45] Wu Q C, Chen Y H, Huang B H, Song J, Xia Y and Zheng S B 2016 Opt. Express 24 22847 [46] You J Q and Nori F 2005 Phys. Today 58 42 [47] Feng Z B 2012 Phys. Rev. A 85 014302 [48] Paladino E, Galperin Y M, Falci G and Altshuler B L 2014 Rev. Mod. Phys. 86 361 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|