CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems |
Li-Xin Gao(高礼鑫)1, Xiao-Ke Zhang(张晓珂)1, An-Lei Zhang(张安蕾)1, Qi-Ling Xiao(肖祁陵)1, Fei Chen(陈飞)1, and Jun-Yi Ge(葛军饴)1,2,3,† |
1 Materials Genome Institute, Shanghai University, Shanghai 200444, China; 2 Shanghai Key Laboratory for High Temperature Superconductors, Shanghai University, Shanghai 200444, China; 3 Zhejiang Laboratory, Hangzhou 311100, China |
|
|
Abstract Multicomponent superconductors exhibit nontrivial vortex behaviors due to the various vortex-vortex interactions, including the competing one in the recently proposed type-1.5 superconductor. However, potential candidate that can be used to study the multicomponent superconductivity is rare. Here, we prepared an artificial superconducting multilayer to act as an alternative approach to study multicomponent superconductivity. The additional repulsive length and the coupling strength among superconducting films were regulated by changing the thickness of the insulting layer. The magnetization measurements were performed to clarify the effect of the competition between the repulsive vortex interactions on the macroscopic superconductivity. The vortex phase diagram and the optimum critical current density have been determined. Furthermore, a second magnetization effect is observed, and is attributed to the upper layer, which provides the weak pinning sites to localize the flux lines. The pinning behaviors switches to the mixed type with the increase of the insulting layer thicknesses. Our results open a new perspective to the study and related applications of the multilayer superconducting systems.
|
Received: 22 April 2022
Revised: 20 July 2022
Accepted manuscript online: 16 August 2022
|
PACS:
|
74.25.Ha
|
(Magnetic properties including vortex structures and related phenomena)
|
|
74.25.Dw
|
(Superconductivity phase diagrams)
|
|
74.25.Bt
|
(Thermodynamic properties)
|
|
74.25.Op
|
(Mixed states, critical fields, and surface sheaths)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12174242), the National Key Research and Development Program of China (Grant No. 2018YFA0704300), the Key Research Project of Zhejiang Laboratory (Grant No. 2021PE0AC02). Jun-Yi Ge also thanks the support by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. |
Corresponding Authors:
Jun-Yi Ge
E-mail: junyi_ge@t.shu.edu.cn
|
Cite this article:
Li-Xin Gao(高礼鑫), Xiao-Ke Zhang(张晓珂), An-Lei Zhang(张安蕾), Qi-Ling Xiao(肖祁陵), Fei Chen(陈飞), and Jun-Yi Ge(葛军饴) Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems 2023 Chin. Phys. B 32 037402
|
[1] Brandt E H and Das M P 1995 Rep. Prog. Phys. 58 1465 [2] Ge J Y, Gutierrez J, Lyashchenko A, Filipov V, Li J and Moshchalkov V V 2014 Phys. Rev. B 90 184511 [3] Reimann T, Mühlbauer S, Schulz M, Betz B, Kaestner A, Pipich V, Böni P and Grünzweig C 2015 Nat. Commun. 6 8813 [4] Bacri J C and Salin D 1988 Endeavor 12 76 [5] Seul M and Andelman D 1995 Science 267 476 [6] Weis R M and McConnell H M 1984 Nature 310 47 [7] Kramer L 1971 Phys. Rev. B 3 3821 [8] Brandt E H 1986 Phys. Rev. B 34 6514 [9] Abrikosov A A 1957 Zh. Eksp. Teor. Fiz. 32 1442 [10] Babaev E and Speight M 2005 Phys. Rev. B 72 180502 [11] Moshchalko V V, Menghini M, Nishio T, Chen Q H, Silhanek A V, Dao V H, Chibotaru L F, Zhigadlo N D and Karpinski J 2009 Phys. Rev. Lett. 102 117001 [12] Backs A, Schulz M, Pipich V, Kleinhans M, Böni P and Mühlbauer S 2019 Phys. Rev. B 100 064503 [13] Vagov A, Wolf S, Croitoru M D and Shanenko A A 2020 Commun. Phys. 3 58 [14] Garaud J, Agterberg D F and Babaev E 2012 Phys. Rev. B 86 060513 [15] Komendova L, Milosevic M V and Peeters F M 2013 Phys. Rev. B 88 094515 [16] Varney C N, Sellin K A H, Wang Q Z, Fangohr H and Babaev E 2013 J. Phys.: Condens. Matter. 25 415702 [17] Portela F S, Corredor L T, Barrozo P, Jung S, Zhang G, Vanacken J, Moshchalkov V V and Aguiar J A 2015 Supercond. Sci. Technol. 28 034001 [18] Malescio G and Pellicane G 2003 Nat. Mater. 2 97 [19] Bean C P 1964 Rev. Mod. Phys. 36 31 [20] Shi Z X, Ji H L, Zhang Y T, Jin X, Xu X N, Ding S Y, Yao X X, Wang C A, Wang R L, Li H C, Zhang H, Sun Z J and Yang Z S 1994 Chin. Phys. B 3 124 [21] Feng Y, Zhou L, Shi L, Yang W M, Zhang C P, Wang J R, Du Z H, Yu Z M, Wu X Z and Zhang Y H 1999 Chin. Phys. B 8 374 [22] Ishida S, Iyo A, Ogino H, Eisaki H, Takeshita N, Kawashima K, Yanagisawa K, Kobayashi Y, Kimoto K, Abe H, Imai M, Shimoyama J and Eisterer M 2019 Npj Quantum Mater. 4 27 [23] Dew-Hughes D 1974 Philos. Mag. 30 293 [24] Dew-Hughes D 1987 Philos. Mag. B 55 459 [25] Blatter G, Feigel'man M V, Geshkenbein V B, Larkin A I and Vinokur V M 1994 Rev. Mod. Phys. 66 1125 [26] Malozemoff A P and Fisher M P A 1990 Phys. Rev. B 42 6784 [27] Krusin-Elbaum L, Civale L, Vinokur V M and Holtzberg F 1992 Phys. Rev. Lett. 69 2280 [28] Ghorbani S R, Wang X L, Dou S X, Lee S I K and Hossain M S A 2008 Phys. Rev. B 78 184502 [29] Griessen R, Wen H H, van Dalen A J J, Dam B, Rector J, Schnack H G, Libbrecht S, Osquiguil E and Bruynseraede Y 1994 Phys. Rev. Lett. 72 1910 [30] Qin M J, Wang X L, Liu H K and Dou S X 2002 Phys. Rev. B 65 132508 [31] Thuneberg E V, Kurkijärvi J and Rainer D 1982 Phys. Rev. Lett. 48 1853 [32] Thuneberg E V 1989 Cryogenics. 29 236 [33] van der Beck C J and Kes P H 1991 Phys. Rev. B 43 13032 [34] Kes P H 1991 Physica C 185-189 288 [35] Aliev A E, Lee S B, Zakhidov A A and Baughman R H 2007 Physica C 453 15 [36] Yamamoto A, Jaroszynski J, Tarantini C, Balicas L, Jiang J, Gurevich A, Larbalestier D C, Jin R, Sefat A S, McGuire M A, Sales B C, Christen D K and Mandrus D 2009 Appl. Phys. Lett. 94 062511 [37] Zhou W, Xing X Z, Wu W J, Zhao H J and Shi Z X 2016 Sci. Rep. 6 22278 [38] Abulafia Y, Shaulov A, Wolfus Y, Prozorov R, Burlachkov L and Yeshurun Y 1996 Phys. Rev. Lett. 77 1596 [39] Yang H, Luo H, Wang Z and Wen H H 2008 Appl. Phys. Lett. 93 142506 [40] Galluzzi A, Buchkov K, Tomov V, Nazarova E, Leo A, Grimaldi G, Nigro A, Pace S and Polichetti M 2018 Supercond. Sci. Technol. 31 015014 [41] Cooley L D, Hu Y F and Moodenbaugh A R 2006 Appl. Phys. Lett. 88 142506 [42] Baumgartner T, Eisterer M, Weber H W, Flükiger R, Scheuerlein C and Bottura L 2014 Supercond. Sci. Technol. 27 015005 [43] Sun D L, Liu Y and Lin C T 2009 Phys. Rev. B 80 144515 [44] Küpfer H, Wolf Th, Lessing C, Zhukov A A, Lancon X, Meier-Hirmer R, Schauer W and Wühl H 1998 Phys. Rev. B 58 2886 [45] Prozorov R, Ni N, Tanatar M A, Kogan V G, Gordon R T, MartinC, Blomberg E C, Prommapan P, Yan J Q, Bud'ko S L and Canfield P C 2008 Phys. Rev. B 78 224506 [46] Salem-Sugui S, Ghivelder Jr L, Alvarenga A D, Cohen L F, Yates K A, Morrison K, Pimentel J L, Huiqian Luo Jr, Wang Z S and Wen H H 2010 Phys. Rev. B 82 054513 [47] Dongjoon S, Shigeyuki I, Akira I, Masamichi N, Jun-ichi S, Michael E and Hiroshi E 2016 Sci. Rep. 6 26671 [48] Mishev V, Nakajima M, Eisaki H and Eisterer M 2016 Sci. Rep. 6 27783 [49] Meng Q Y, Varney C N, Fangohr H and Babaev E 2014 Phys. Rev. B 90 020509 [50] Zhang A L, Jiang W Y, Chen X H, Zhang X K, Lu W L, Chen F, Feng Z J, Cao S X, Zhang J C and Ge J Y 2022 Curr. Appl. Phys. 35 32 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|