Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 097404    DOI: 10.1088/1674-1056/ac67c7

Finite superconducting square wire-network based on two-dimensional crystalline Mo2C

Zhen Liu(刘震)1, Zi-Xuan Yang(杨子萱)1, Chuan Xu(徐川)2, Jia-Ji Zhao(赵嘉佶)3, Lu-Junyu Wang(王陆君瑜)3, Yun-Qi Fu(富云齐)1, Xue-Lei Liang(梁学磊)1, Hui-Ming Cheng(成会明)2,4, Wen-Cai Ren(任文才)2,4, Xiao-Song Wu(吴孝松)3, and Ning Kang(康宁)1,†
1 Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China;
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
3 State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China;
4 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Abstract  Superconducting wire-networks are paradigms to study Cooper pairing issues, vortex dynamics and arrangements. Recently, emergent low-dimensional crystalline superconductors were reported in the minimal-disorder limit, providing novel platforms to reveal vortices-related physics. Study on superconducting loops with high-crystallinity is thus currently demanded. Here, we report fabrication and transport measurement of finite square-network based on two-dimensional crystalline superconductor Mo2C. We observe oscillations in the resistance as a function of the magnetic flux through the loops. Resistance dips at both matching field and fractional fillings are revealed. Temperature and current evolutions are carried out in magnetoresistance to study vortex dynamics. The amplitude of oscillation is enhanced due to the interaction between thermally activated vortices and the currents induced in the loops. The driving current reduces the effective activation energy for vortex, giving rise to stronger vortex interaction. Moreover, by the thermally activated vortex creep model, we derive the effective potential barrier for vortex dissipation, which shows well-defined correspondence with structures in magnetoresistance. Our work shows that low-dimensional crystalline superconducting network based on Mo2C possesses pronounced potential in studying the modulation of vortex arrangements and dynamics, paving the way for further investigations on crystalline superconducting network with various configurations.
Keywords:  superconducting wire-network      crystalline superconductor      vortex dynamics      low temperature transport  
Received:  08 March 2022      Revised:  12 April 2022      Accepted manuscript online:  18 April 2022
PACS:  74.78.-w (Superconducting films and low-dimensional structures)  
  74.81.Fa (Josephson junction arrays and wire networks)  
  74.25.F- (Transport properties)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974026, 11774005, and 51802314), the National Key Research and Development Program of China (Grant No. 2017YFA0303304), Science Foundation of Jihua Laboratory (Grant No. 2021B0301030003-03), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000). Dr. C. Xu acknowledges the support of the Youth Innovation Promotion Association of Chinese Academy of Sciences.
Corresponding Authors:  Ning Kang     E-mail:

Cite this article: 

Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁) Finite superconducting square wire-network based on two-dimensional crystalline Mo2C 2022 Chin. Phys. B 31 097404

[1] Tinkham M 1964 Phys. Rev. 133 A97
[5] Groff R and Parks R 1968 Phys. Rev. 176 567
[6] Stewart Jr M, Yin A, Xu J and Valles Jr J M 2007 Science 318 1273
[7] Yang C, Liu Y, Wang Y, et al. 2019 Science 366 1505
[8] Gurovich D, Tikhonov K S, Mahalu D and Shahar D 2015 Phys. Rev. B 91 174505
[9] Kato M and Sato O 2013 Supercond. Sci. Technol. 26 033001
[10] Rammal R, Lubensky T and Toulouse G 1983 Phys. Rev. B 27 2820
[11] Lin Y L and Nori F 2002 Phys. Rev. B 65 214504
[12] Chi C, Santhanam P and Blöchl 1992 J. Low. Temp. phys. 88 163
[13] Pannetier B, Chaussy J, Rammal R and Villegier J 1984 Phys. Rev. Lett. 53 1845
[14] Ling X, Lezec H, Higgins M, Tsai J, Fujita J, Numata H, Nakamura Y, Ochiai Y, Tang C, Chaikin P, et al. 1996 Phys. Rev. Lett. 76 2928
[15] Yu F, Israeloff N, Goldman A and Bojko R 1992 Phys. Rev. Lett. 68 2535
[16] Wilks C W, Bojko R and Chaikin P M 1991 Phys. Rev. B 43 2727
[17] Van der Zant H, Webster M, Romijn J and Mooij J 1994 Phys. Rev. B 50 340
[18] Behrooz A, Burns M, Levine D, Whitehead B and Chaikin P 1987 Phys. Rev. B 35 8396
[19] Itzler M, Behrooz A, Wilks C, Bojko R and Chaikin P 1990 Phys. Rev. B 42 8319
[20] Teitel S and Jayaprakash C 1983 Phys. Rev. Lett 51 1999
[21] Sochnikov I, Shaulov A, Yeshurun Y, Logvenov G and Božović I 2010 Nature Nanotech. 5 516
[22] Sochnikov I, Shaulov A, Yeshurun Y, Logvenov G and Božović I 2010 Phys. Rev. B 82 094513
[23] Sochnikov I, Božović I, Shaulov A and Yeshurun Y 2011 Phys. Rev. B 84 094530
[24] Juričić V, Herbut I F and Tešanović Z 2010 Phys. Rev. Lett. 100 187006
[25] Berg E, Fradkin E and Kivelson S A 2009 Nat. Phys. 5 830
[26] de Souza Silva C C, Van de Vondel J, Morelle M and Moshchalkov V V 2006 Nature 440 651
[27] Morgan-Wall T, Leith B, Hartman N, Rahman A and Marković N 2015 Phys. Rev. Lett. 114 077002
[28] Saito Y, Nojima T and Iwasa Y 2017 Nat. Phys. 2 16094
[29] Xu C, Wang L, Liu Z, Chen L, Guo J, Kang N, Ma X L, Cheng H M and Ren W 2015 Nat. Mater. 14 1135
[30] Liu Z, Xu C, Kang N, Wang L, Jiang Y, Du J, Liu Y, Ma X L, Cheng H M and Ren W 2016 Nano Lett. 16 4243
[31] Liu Z, Wang C, Xu C, Hao M, Cheng H M, Ren W and Kang N 2019 2D Mater. 6 021005
[32] Xu C, Liu Z, Zhang Z, Liu Z, Li J, Pan M, Kang N, Cheng H M and Ren W 2020 Adv. Mater. 32 2002825
[33] Grest G S, Chaikin P M and Levine D 1988 Phys. Rev. Lett. 60 1162
[34] Halsey T C 1985 Phys. Rev. B 31 5728
[35] Hofstadter D R 1976 Phys. Rev. B 14 2239
[36] FeigelMan M, Geshkenbein V, Larkin A and Vinokur V 1989 Phys. Rev. B 63 2303
[37] Anderson P W and Kim Y 1964 Phys. Rev. B 36 39
[38] Saito Y, Kasahara Y, Ye J, Iwasa Y and Nojima T 2015 Science 350 409
[39] Tsen A, Hunt B, Kim Y, Yuan Z, Jia S, Cava R, Hone J, Kim P, Dean C and Pasupathy A 2016 Nat. Phys. 12 208
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Dynamic evolution of vortex structures induced bytri-electrode plasma actuator
Bo-Rui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(2): 024704.
[3] Simulating the time-dependent Ginzburg-Landau equations for type-II superconductors by finite-difference method
Liao Hong-Yin (廖红印), Zhou Shi-Ping (周世平), Shi Xiao-Yun (施晓蕴). Chin. Phys. B, 2004, 13(5): 737-745.
No Suggested Reading articles found!