Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 106402    DOI: 10.1088/1674-1056/26/10/106402
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Anomalous behavior and phase transformation of α -GaOOH nanocrystals under static compression

Zhao Zhang(张钊)1, Hang Cui(崔航)1, Da-Peng Yang(杨大鹏)2, Jian Zhang(张剑)1, Shun-Xi Tang(汤顺熙)1, Si Wu(吴思)1, Qi-Liang Cui(崔啟良)1
1. College of Physics, State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
2. College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130012, China
Abstract  

The structural compression mechanism and compressibility of gallium oxyhydroxide, α -GaOOH, are investigated by in situ synchrotron radiation x-ray diffraction at pressures up to 31.0 GPa by using the diamond anvil cell technique. The α -GaOOH sustains its orthorhombic structure when the pressure is lower than 23.8 GPa. The compression is anisotropic under hydrostatic conditions, with the a-axis being most compressible. The compression proceeds mainly by shrinkage of the void channels formed by the coordination GaO3(OH)3 octahedra of the crystal structure. Anomaly is found in the compression behavior to occur at 14.6 GPa, which is concomitant with the equatorial distortion of the GaO3(OH)3 octahedra. A kink occurs at 14.6 GPa in the plot of finite strain f versus normalized stress F, indicating the change in the bulk compression behavior. The fittings of a second order Birch-Murnaghan equation of state to the P-V data in different pressure ranges result in the bulk moduli B0=199(1) GPa for P < 14.6 GPa and B0=167(2) GPa for P > 14.6 GPa. As the pressure is increased to about 25.8 GPa, a first-order phase transformation takes place, which is evidenced by the abrupt decrease in the unit cell volume and b and c lattice parameters.

Keywords:  gallium oxyhydroxide      high pressure      synchrotron radiation      equation of state  
Received:  11 May 2017      Revised:  18 July 2017      Accepted manuscript online: 
PACS:  64.70.Nd (Structural transitions in nanoscale materials)  
  82.30.Rs (Hydrogen bonding, hydrophilic effects)  
  91.60.Hg (Phase changes)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 50772043, 51172087, and 11074089) and the National Basic Research Program of China (Grant No. 2011CB808200).

Corresponding Authors:  Da-Peng Yang, Jian Zhang     E-mail:  ydp@jlu.edu.cn;zhang_jian@jlu.edu.cn

Cite this article: 

Zhao Zhang(张钊), Hang Cui(崔航), Da-Peng Yang(杨大鹏), Jian Zhang(张剑), Shun-Xi Tang(汤顺熙), Si Wu(吴思), Qi-Liang Cui(崔啟良) Anomalous behavior and phase transformation of α -GaOOH nanocrystals under static compression 2017 Chin. Phys. B 26 106402

[1] Hemley R J, Jephcoat A P, Mao H K, Zha C S, Finger L W and Cox D E 1987 Nature 330 737
[2] Chou I M, Blank J G, Goncharov A F, Mao H K and Hemley R J 1998 Science 281 809
[3] Boldyreva E V 2004 J. Mol. Struct. 700 151
[4] Wang K, Duan D F, Wang R, Liu D, Tang L Y, Cui T, Liu B B, Cui Q L, Liu J, Zou B and Zou G T 2009 J. Phys. Chem. B 113 14719
[5] Meade C and Jeanloz R 1990 Geophys. Res. Lett. 17 1157
[6] Iizuka R, Kagi H, Komatsu K, Ushijima D, Nakano S, Sano-Furukawa A, Nagai T and Yagi T 2011 Phys. Chem. Miner. 38 777
[7] Nguyen J H, Kruger M B and Jeanloz R 1997 Phys. Rev. Lett. 78 1936
[8] Friedrich A, Haussühl E, Boehler R, Morgenroth W, Juarez-Arellano E A and Winkler B 2007 Am. Mineral. 92 1640
[9] Friedrich A, Wilson D J, Haussühl E, Winkler B, Morgenroth W, Refson K and Milman V 2007 Phys. Chem. Miner. 34 145
[10] Mao H K, Shu J, Hu J and Hemley R J 2010 J. Superhard Mater. 32 192
[11] Xu J A, Hu J, Ming L C, Huang E, and Xie H 1994 Geophys. Res. Lett. 21 161
[12] Grevel K D, Burchard M, Fasshauer D W and Peun T 2000 J. Geophys. Res.:Solid Earth 105 27877
[13] Meade C and Jeanloz R 1991 Science 252 68
[14] Sato T and Nakamura T 1982 J. Chem. Technol. Biot. 32 469
[15] Lee H K and Yu J S 2012 Jpn. J. Appl. Phys. 51 102102
[16] Sun M, Li D, Zhang W, Fu X, Shao Y, Li W, Xiao G and He Y 2010 Nanotechnology 21 355601
[17] Sano-Furukawa A, Yagi T, Okada T, Gotou H and Kikegawa T 2012 Phys. Chem. Miner. 39 375
[18] Bolotina, N, Molchanov, V, Dyuzheva, T, Lityagina, L and Bendeliani, N 2008 Crystallogr. Rep. 53 960
[19] Shi L, Zhang J, Wu S, Li Y, Jiang L and Cui Q 2014 J. Am. Ceram. Soc. 97 2607
[20] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91(B5) 4673
[21] Hammersley A P, Svensson S O, Hanfland M, Fitch A N and Hausermann D 1996 High Press. Res. 14 235
[22] Hammersley A P 1997 ESRF Internal Report ESRF97HA02T
[23] Hammersley A P 1998 ESRF Internal Report ESRF98HA01T
[24] Toby B H 2001 J. Appl. Cryst. 34 210
[25] Larson A C and Von Dreele R B 1994 Los Alamos National Laboratory Report LAUR 86-748
[26] Pye M F, Birtill J J and Dickens P G 1977 Acta Crystallogr. B 33 3224
[27] Anderson D L and Anderson O L 1970 J. Geophys. Res. 75 3494
[28] Nagai T, Kagi H and Yamanaka T 2003 Am. Mineral. 88 1423
[29] Xu W, Greenberg E, Rozenberg G K, Pasternak M P, Bykova E, Boffa-Ballaran T, Dubrovinsky L, Prakapenka V, Hanfland M, Vekilova O Y, Simak S I and Abrikosov I A 2013 Phys. Rev. Lett. 111 175501
[30] Nikolaev N A, Lityagina L M, Dyuzheva T I, Kulikova L F, Bendeliani N A and Vereshchagin L F 2008 J. Alloys Compd. 459 95
[31] Sano-Furukawa A, Kagi H, Nagai T, Nakano S, Fukura S, Ushijima D, Iizuka R, Ohtani E and Yagi T 2009 Am. Mineral. 94 1255
[32] Steiner T and Saenger W 1994 Acta Crystallogr., Sect. B:Struct. Sci. 50 348
[33] Steiner T 2002 Angew. Chem. Int. Ed. 41 48
[34] Iizuka R, Yagi T, Komatsu K, Gotou H, Tsuchiya T, Kusaba K and Kagi H 2013 Am. Mineral. 98 1421
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[3] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[4] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[5] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[6] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[7] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[8] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[9] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[12] Pressure-induced phase transitions in the ZrXY (X= Si, Ge, Sn;Y= S, Se, Te) family compounds
Qun Chen(陈群), Juefei Wu(吴珏霏), Tong Chen(陈统), Xiaomeng Wang(王晓梦), Chi Ding(丁弛), Tianheng Huang(黄天衡), Qing Lu(鲁清), and Jian Sun(孙建). Chin. Phys. B, 2022, 31(5): 056201.
[13] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[14] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[15] Pressure-induced novel structure with graphene-like boron-layer in titanium monoboride
Yuan-Yuan Jin(金园园), Jin-Quan Zhang(张金权), Shan Ling(凌山), Yan-Qi Wang(王妍琪), Song Li(李松), Fang-Guang Kuang(匡芳光), Zhi-Yan Wu(武志燕), and Chuan-Zhao Zhang(张传钊). Chin. Phys. B, 2022, 31(11): 116104.
No Suggested Reading articles found!