CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Diffraction properties of binary graphene sheet arrays |
Yang Fan(樊洋), Cong Chen(陈聪), Ding-Guo Li(李定国) |
College of Science, Naval University of Engineering, Wuhan 430033, China |
|
|
Abstract We theoretically and numerically investigate the diffraction properties of surface plasmon polariton (SPP) in binary graphene sheet arrays. The single SPP band splits into two minibands by alternatively arranging the graphene waveguides with two different chemical potentials. Numerical simulations show that SPP beams in the array split into two different paths due to the different diffraction relation.
|
Received: 20 July 2016
Revised: 11 October 2016
Accepted manuscript online:
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
42.82.Et
|
(Waveguides, couplers, and arrays)
|
|
81.05.ue
|
(Graphene)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51109215 and 11604388) and the Natural Science Foundation of Hubei Province, China (Grant No. 2015CFC869). |
Corresponding Authors:
Yang Fan
E-mail: ericfan626@gmail.com
|
Cite this article:
Yang Fan(樊洋), Cong Chen(陈聪), Ding-Guo Li(李定国) Diffraction properties of binary graphene sheet arrays 2017 Chin. Phys. B 26 017302
|
[1] |
Christodoulides D N, Lederer F and Silberberg Y 2004 Nature 424 817
|
[2] |
Eisenberg H S, Silberberg Y, Morandotti R and Aitchison J S 2000 Phys. Rev. Lett. 85 1863
|
[3] |
Longhi S 2006 Opt. Lett. 31 1857
|
[4] |
Kanshu A, Rüter C E, Kip D, Shandarov V, Beličev P P, Ilić I and Stepić M 2012 Opt. Lett. 37 1253
|
[5] |
Wang Z, Wang B, Wang K, Long H and Lu P 2016 Opt. Lett. 41 3619
|
[6] |
Vakil A and Engheta N 2011 Science 332 1291
|
[7] |
Chen P Y and Alú A 2011 ACS Nano 5 5855
|
[8] |
Javier García de Abajo F 2014 ACS Photonics 1 135
|
[9] |
Du L L, Li Q, Li S X, Hu F R, Xiong X M, Li Y F, Zhang W T and Han J G 2014 Chin. Phys. B 25 027301
|
[10] |
Ke S, Wang B, Huang H, Long H, Wang K and Lu P 2015 Opt. Express 23 8888
|
[11] |
Yeh P, Yariv A and Hong C S 1977 J. Opt. Soc. Am. 67 423
|
[12] |
Wang F, Qin C, Wang B, Ke S, Long H, Wang K and Lu P 2015 Opt. Express 23 31136
|
[13] |
Wang F, Qin C, Wang B, Ke S, Long H, Wang K and Lu P 2017 IEEE J. Sel. Top. Quant. Electron. 23 4600105
|
[14] |
Hanson G W 2008 J. Appl. Phys. 104 084314
|
[15] |
Gan C H 2012 Appl. Phys. Lett. 101 111609
|
[16] |
Wang B, Zhang X, García-Vidal F J, Yuan X and Teng J 2012 Phys. Rev. Lett. 109 073901
|
[17] |
Sukhorukov A A and Kivshar Y S 2002 Opt. Lett. 27 2112
|
[18] |
Christodoulides D N and Joseph R I 1988 Opt. Lett. 13 794
|
[19] |
Fan Y, Wang B, Wang K, Long H and Lu P 2014 Opt. Lett. 39 3371
|
[20] |
Fan Y, Wang B, Huang H, Wang K, Long H and Lu P 2014 Opt. Lett. 39 6827
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|