Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 017303    DOI: 10.1088/1674-1056/26/1/017303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of structural, electronic, and optical properties of cubic InAsxNyP1-x-y triangular quaternary alloys

I Hattabi1, A Abdiche2,4, F Soyalp3, R Moussa4, R Riane4, K Hadji4, S Bin-Omran5, R Khenata2
1. Laboratoire synthése et Catalyse, Ibn Khaldoun Universitéof Tiaret, Tiaret 14000, Algeria;
2. Laboratoire de Physique Quantique et de Modélisation Mathématique(LPQ3M), Département de Technologie, Universitéde Mascara, Mascara 29000, Algeria;
3. Department of Physics, Faculty of Education, YüzüncüYil University, 65080 Van, Turkey;
4. Science and Technology Département Ibn Khaldoun Universitéde Tiaret, Tiaret 14000, Algeria;
5. Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
Abstract  In this paper, we investigated the structural, electronic and optical properties of InAs, InN and InP binary compounds and their related ternary and quaternary alloys by using the full potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT). The total energies, the lattice parameters, and the bulk modulus and its first pressure derivative were calculated using different exchange correlation approximations. The local density approach (LDA) and Tran-Blaha modified Becke-Johnson (TB-mBJ) approximations were used to calculate the band structure. Nonlinear variations of the lattice parameters, the bulk modulus and the band gap with compositions x and y are found. Furthermore, the optical properties and the dielectric function, refractive index and loss energy were computed. Our results are in good agreement with the validated experimental and theoretical data found in the literature.
Keywords:  density functional theory      full potential linearized augmented plane wave      Tran-Blaha modified Becke-Johnson approximations      InAsxNyP1-x-y  
Received:  15 July 2016      Revised:  29 September 2016      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  64.70.kd (Metals and alloys)  
  64.70.kg (Semiconductors)  
Fund: Project supported by the Deanship of Scientific Research at King Saud University Group (Grant No. PRG-1437-39).
Corresponding Authors:  A Abdiche, R Khenata     E-mail:  abdiche_a@yahoo.fr;khenatarabah@yahoo.fr

Cite this article: 

I Hattabi, A Abdiche, F Soyalp, R Moussa, R Riane, K Hadji, S Bin-Omran, R Khenata First-principles study of structural, electronic, and optical properties of cubic InAsxNyP1-x-y triangular quaternary alloys 2017 Chin. Phys. B 26 017303

[1] Smokal V, Derkowska B and Czaplicki R 2009 Opt. Mater. 31 518
[2] Chen A B and Sher A 1980 Phys. Rev. B 23 5360
[3] Shimomura A, Anan T and Sugou S 1996 J. Cryst. Growth 162 121
[4] Johnson N F, Ehrenreich H, Hui P M and Young P M 1990 Phys. Rev. B 41 3655
[5] Reshak A H 2006 J. Chem. Phys 125 034710
[6] Al-Douri Y and Reshak A H 2011 Appl. Phys. A 104 1159
[7] Bredin J L 1994 Science 263 487
[8] Borak A 2005 Science 308 638
[9] Levine J Hand Allan D C 1991 Phys. Rev. Lett. 66 41
[10] Reshak A H and Auluck S 2007 Physica B 395 143
[11] Reshak A H 2005 Eur. Phys. J. C 47 503
[12] Tit N, Amrane N and Reshak A H 2010 Cryst. Res. Technol. 45 59
[13] Haq B U, Ahmed R, Hassan F E H, Khenata R, Kamin M K and Goumri S 2014 Solar Energy 100 1
[14] Kasap S and Cappers P (Eds.) 2006 Springer Handbook of Electronics and Photonic Materials (Springer)
[15] Wang Y, Yin H, Cao R, Zahid F, Zhu Y, Liu L, Wang J and Guo H 2013 Phys. Rev. B 87 235203
[16] Marvin L, James C and Chelikowsky R Electronic Structure and Optical Properties of Semiconductors (in Springer Series in Solid-State Sciences Vol. 75) pp. 79-139
[17] Blaha P, Schwarz K, MadsenG K H, Kvasnicka D and Luitz J 2001 Wien2 k, An Augmented Plane Wave Plus Local Orbital Program for Calculating Crystal Properties (Vienna:Vienna University of Technology)
[18] Schwarz K and Blaha P 2003 Comput. Mater. Sci. 28 266
[19] Wu Z and Cohen R E 2006 Phys. Rev. B 73 235116
[20] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[21] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[22] Koller D, Tran F and Blaha P 2012 Phys. Rev. B 85 1
[23] Guemou M, Bouhafs B, Abdiche A, Khenata R, Al Douri Y and Bin O S 2012 Physica B 407 1292
[24] Vegard L 1921 Zeitschrift Fur Physik 5 17
[25] Adachi S 2009 Properties of Semiconductor Alloys:Group-IV, III-V and II-VI Semiconductors(John Wiley & Sons)
[26] Ouahrani T, Reshak A H, Khenata R, Amrani B, Mebrouki M, Otero-de-la Roza A and Luana V 2010 J. Solid State Chem. 183 46
[27] Tripathy S 2015 Opt. Mater. 46 240
[28] Shi H and Duan Y 2008 Phys. Lett A 373 165
[29] Abdiche A, Abid H, Riane R and Bouaza A 2010 Acta Phys. Polonica 117 921
[30] Ziane M I, Zouaoui B, Ouahrani T and Hamza B 2015 Mater. Sci. Semicond Process 30 181
[31] Ben F J, Debbichi M and Said M 2007 Microelectronic J. 38 860
[32] Serrano J, Rubio A Hernandez E, Munoz A and Mujica A 2000 Phys. Rev. B 62 16612
[33] Ahmed R, Hashem far S J, Akbarzadeh H, Ahmed M and Aleem F 2007 Computat. Mater. Sci. 39 580
[34] Wang S Q and Yes H Q 2002 Phys. Rev. B 66 235111
[35] Hellwege K H Madelung O, Landolt H and Bornstein R 1982 Semiconductors:Physics of Group IV Elements and III-V Compounds (New Series, Group III, 17a) (Berlin:Springer Verlag) p. 602
[36] Shen W and Zunger A 1999 Phys. Rev. B 60 5404
[37] van Camp P E, van Doren V E and Devreese J T 1990 Phys. Rev. B 41 1598
[38] Nemiri O, Ghemid S, Chouahda Z, Meradji H and El Haj H F 2013 Int. J. Mod. Phys. B 27 1350166
[39] Bechstedt F and Del Sole R 1988 Phys. Rev. B 38 7710
[40] Edgar J H 1994 Properties of Group III-Nitrides EMIS Data Reviews 11, INSPEC, London, p. 10233
[41] Rochon P and Fortin E 1975 Phys. Rev. B 12 5803
[42] Madelung O, Schulz M, Londolt H and Bornstein R 1987 Numerical Data and Functional Relationships in Science and Technology in Cryst. Solid State Phys. 17(Berlin:Springer Verlag)
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!