Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 097307    DOI: 10.1088/1674-1056/25/9/097307
RAPID COMMUNICATION Prev   Next  

Carrier transport in III-V quantum-dot structures for solar cells or photodetectors

Wenqi Wang(王文奇), Lu Wang(王禄), Yang Jiang(江洋), Ziguang Ma(马紫光), Ling Sun(孙令), Jie Liu(刘洁), Qingling Sun(孙庆灵), Bin Zhao(赵斌), Wenxin Wang(王文新), Wuming Liu(刘伍明), Haiqiang Jia(贾海强), Hong Chen(陈弘)
Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

According to the well-established light-to-electricity conversion theory, resonant excited carriers in the quantum dots will relax to the ground states and cannot escape from the quantum dots to form photocurrent, which have been observed in quantum dots without a p-n junction at an external bias. Here, we experimentally observed more than 88% of the resonantly excited photo carriers escaping from InAs quantum dots embedded in a short-circuited p-n junction to form photocurrent. The phenomenon cannot be explained by thermionic emission, tunneling process, and intermediate-band theories. A new mechanism is suggested that the photo carriers escape directly from the quantum dots to form photocurrent rather than relax to the ground state of quantum dots induced by a p-n junction. The finding is important for understanding the low-dimensional semiconductor physics and applications in solar cells and photodiode detectors.

Keywords:  quantum dots      electronic transport      p-n junctions      photoluminescence  
Received:  15 July 2016      Accepted manuscript online: 
PACS:  73.21.La (Quantum dots)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11574362, 61210014, 11374340, and 11474205) and the Innovative Clean-Energy Research and Application Program of Beijing Municipal Science and Technology Commission, China (Grant No. Z151100003515001).These authors contributed equally to this work.

Corresponding Authors:  Hong Chen     E-mail:  hchen@iphy.ac.cn

Cite this article: 

Wenqi Wang(王文奇), Lu Wang(王禄), Yang Jiang(江洋), Ziguang Ma(马紫光), Ling Sun(孙令), Jie Liu(刘洁), Qingling Sun(孙庆灵), Bin Zhao(赵斌), Wenxin Wang(王文新), Wuming Liu(刘伍明), Haiqiang Jia(贾海强), Hong Chen(陈弘) Carrier transport in III-V quantum-dot structures for solar cells or photodetectors 2016 Chin. Phys. B 25 097307

[1] Goetzbergera A, Heblinga C and Schockb H W 2003 Mater. Sci. Eng. R 40 1
[2] Jenny D A, Loferskr J J and Rappaiport P 1956 Phys. Rev. 101 1208
[3] Chapin D M, Fuller C S and Pearson G L 1954 J. Appl. Phys. 25 676
[4] Nelson J 2003 The Physics of Solar Cells (1st edn.) (London: Imperial College Press) pp. 19-37
[5] Rogalski A 2011 Infrared Detectors (2nd edn.) (London: Taylor and Francis Group) pp. 295-338
[6] Basu P K 2003 Theory of Optical Processes in Semiconductors (2nd edn.) (New York: Oxford University Press) pp. 80-122
[7] Dahal R, Pantha B, Li J, Lin J Y and Jiang H X 2009 Appl. Phys. Lett. 94 063505
[8] Ekins-Daukes N J, Barnham K W J, Connolly J P, Roberts J S, Clark J C, Hill G and Mazzer M 1999 Appl. Phys. Lett. 75 4195
[9] Chiou Y Z, Su Y K, Chang S J, Gong J, Lin Y C, Liu S H and Chang C S 2003 IEEE J. Quantum Electron. 39 681
[10] Yoffe A D 2001 Adv. Phys. 50 1
[11] Bratschitsch R and Leitenstorfer A 2006 Nat. Mater. 5 855
[12] Shields A J 2007 Nat. Photon. 1 215
[13] Bhattacharya P, Ghosh S and Stiff-Roberts A D 2004 Annu. Rev. Mater. Res. 34 1
[14] Reed M A, Randall J N, Aggarwal R J, Matyi R J, Moore T M and Wetsel A E 1988 Phys. Rev. Lett. 60 535
[15] Martí A, Luque A and Nozik A J 2007 Mrs Bull 32 236
[16] Luque A and Martí A 2011 Nat. Photonics 5 137
[17] Bimberg D, Grundmann M and Ledentsov N N 1999 Quantum Dot Heterostructures (1st edn.) (New York: Wiley) pp. 1-8
[18] Martí A, Luque A, Stanley C, López N, Cuadra L, Zhou D, Pearson J L and McKee A 2004 J. Appl. Phys. 96 903
[19] Martí A, Luque A and Stanley C 2012 Nat. Photonics 6 146
[20] Martí A and Luque A 1997 Phys. Rev. Lett. 78 5014
[21] Li T, Bartolo R E and Dagenais M 2013 Appl. Phys. Lett. 103 141113
[22] Martí A, Antolín E, Farmer C D, Linares P G, Hernández E, Sśnchez A M, Ben T, Molina S I, Stanley C R and Luque A 2010 J. Appl. Phys. 108 064513
[23] Martí A and Luque A 2010 Adv. Mater. 22 160
[24] Martí A, Antolín E, Stanley C R, Farmer C D, López E, Díaz P, Cánovas E, Linares P G and Luque A 2006 Phys. Rev. Lett. 97 247701
[25] Nozawa T, Takagi H, Watanabe K and Arakawa Y 2015 Nano Lett. 15 4483
[26] Raghavan S, Forman D, Hill P, Weisse-Bernstein N R, von Winckel G, Rotella P, Krishna S, Kennerly S W and Little J W 2004 J. Appl. Phys. 96 1036
[27] Wu J, Makableh Y F M, Vasan R, Manasreh M O, Liang B, Reyner C J and Huffaker D L 2012 Appl. Phys. Lett. 100 051907
[28] Adler F, Geiger M, Bauknecht A, Haase D, Ernst P, Dörnen A, Scholz F and Schweizer H 1998 J. Appl. Phys. 83 1631
[29] Datas A, López E, Ramiro I, Antolín E, Martí A and Luque A 2015 Phys. Rev. Lett. 114 157701
[30] Pal D and Towe E 2006 Appl. Phys. Lett. 88 153109
[31] Heitz R, Veit M, Ledentsov N N, Hoffmann A and Bimberg D 1997 Phys. Rev. B 56 10435
[32] Li S S and Xia J B 2000 J. Appl. Phys. 88 7171
[33] Schmidt T and Lischka K 1992 Phys. Rev. B 45 8989
[34] Steer M J, Mowbray D J, Tribe W R, Skolnick M S, Sturge M D, Hopkinson M, Cullis A G, Whitehouse C R and Murray R 1996 Phys. Rev. B 54 17738
[35] Kapteyn C M A, Stier O, Heitz R, Grundmann M, Zakharov N D and Bimberg D 1999 Phys. Rev. B 60 14265
[36] Paskov P P, Monemar B, Garcia J M, Schoenfeld W V and Petroff P M 2000 Appl. Phys. Lett. 77 812
[37] Harrison J W and Hauser J R 1976 J. Appl. Phys. 47 292
[38] Martí A, Luque A, Ramiroa I, Antolín E and Tobías I 2013 Sol. Energy Mater. Sol. Cells 115 138
[39] Mellor A, Tobías I and Martí A 2014 Adv. Funct. Mater. 24 339
[40] Sturge M D 1962 Phys. Rev. 127 768
[41] Elliott R J 1957 Phys. Rev. 108 1384
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[5] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[6] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[10] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[11] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[12] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[13] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[14] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[15] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
No Suggested Reading articles found!