|
|
Carrier transport in III-V quantum-dot structures for solar cells or photodetectors |
Wenqi Wang(王文奇), Lu Wang(王禄), Yang Jiang(江洋), Ziguang Ma(马紫光), Ling Sun(孙令), Jie Liu(刘洁), Qingling Sun(孙庆灵), Bin Zhao(赵斌), Wenxin Wang(王文新), Wuming Liu(刘伍明), Haiqiang Jia(贾海强), Hong Chen(陈弘) |
Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract According to the well-established light-to-electricity conversion theory, resonant excited carriers in the quantum dots will relax to the ground states and cannot escape from the quantum dots to form photocurrent, which have been observed in quantum dots without a p-n junction at an external bias. Here, we experimentally observed more than 88% of the resonantly excited photo carriers escaping from InAs quantum dots embedded in a short-circuited p-n junction to form photocurrent. The phenomenon cannot be explained by thermionic emission, tunneling process, and intermediate-band theories. A new mechanism is suggested that the photo carriers escape directly from the quantum dots to form photocurrent rather than relax to the ground state of quantum dots induced by a p-n junction. The finding is important for understanding the low-dimensional semiconductor physics and applications in solar cells and photodiode detectors.
|
Received: 15 July 2016
Accepted manuscript online:
|
PACS:
|
73.21.La
|
(Quantum dots)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574362, 61210014, 11374340, and 11474205) and the Innovative Clean-Energy Research and Application Program of Beijing Municipal Science and Technology Commission, China (Grant No. Z151100003515001).These authors contributed equally to this work. |
Corresponding Authors:
Hong Chen
E-mail: hchen@iphy.ac.cn
|
Cite this article:
Wenqi Wang(王文奇), Lu Wang(王禄), Yang Jiang(江洋), Ziguang Ma(马紫光), Ling Sun(孙令), Jie Liu(刘洁), Qingling Sun(孙庆灵), Bin Zhao(赵斌), Wenxin Wang(王文新), Wuming Liu(刘伍明), Haiqiang Jia(贾海强), Hong Chen(陈弘) Carrier transport in III-V quantum-dot structures for solar cells or photodetectors 2016 Chin. Phys. B 25 097307
|
[1] |
Goetzbergera A, Heblinga C and Schockb H W 2003 Mater. Sci. Eng. R 40 1
|
[2] |
Jenny D A, Loferskr J J and Rappaiport P 1956 Phys. Rev. 101 1208
|
[3] |
Chapin D M, Fuller C S and Pearson G L 1954 J. Appl. Phys. 25 676
|
[4] |
Nelson J 2003 The Physics of Solar Cells (1st edn.) (London: Imperial College Press) pp. 19-37
|
[5] |
Rogalski A 2011 Infrared Detectors (2nd edn.) (London: Taylor and Francis Group) pp. 295-338
|
[6] |
Basu P K 2003 Theory of Optical Processes in Semiconductors (2nd edn.) (New York: Oxford University Press) pp. 80-122
|
[7] |
Dahal R, Pantha B, Li J, Lin J Y and Jiang H X 2009 Appl. Phys. Lett. 94 063505
|
[8] |
Ekins-Daukes N J, Barnham K W J, Connolly J P, Roberts J S, Clark J C, Hill G and Mazzer M 1999 Appl. Phys. Lett. 75 4195
|
[9] |
Chiou Y Z, Su Y K, Chang S J, Gong J, Lin Y C, Liu S H and Chang C S 2003 IEEE J. Quantum Electron. 39 681
|
[10] |
Yoffe A D 2001 Adv. Phys. 50 1
|
[11] |
Bratschitsch R and Leitenstorfer A 2006 Nat. Mater. 5 855
|
[12] |
Shields A J 2007 Nat. Photon. 1 215
|
[13] |
Bhattacharya P, Ghosh S and Stiff-Roberts A D 2004 Annu. Rev. Mater. Res. 34 1
|
[14] |
Reed M A, Randall J N, Aggarwal R J, Matyi R J, Moore T M and Wetsel A E 1988 Phys. Rev. Lett. 60 535
|
[15] |
Martí A, Luque A and Nozik A J 2007 Mrs Bull 32 236
|
[16] |
Luque A and Martí A 2011 Nat. Photonics 5 137
|
[17] |
Bimberg D, Grundmann M and Ledentsov N N 1999 Quantum Dot Heterostructures (1st edn.) (New York: Wiley) pp. 1-8
|
[18] |
Martí A, Luque A, Stanley C, López N, Cuadra L, Zhou D, Pearson J L and McKee A 2004 J. Appl. Phys. 96 903
|
[19] |
Martí A, Luque A and Stanley C 2012 Nat. Photonics 6 146
|
[20] |
Martí A and Luque A 1997 Phys. Rev. Lett. 78 5014
|
[21] |
Li T, Bartolo R E and Dagenais M 2013 Appl. Phys. Lett. 103 141113
|
[22] |
Martí A, Antolín E, Farmer C D, Linares P G, Hernández E, Sśnchez A M, Ben T, Molina S I, Stanley C R and Luque A 2010 J. Appl. Phys. 108 064513
|
[23] |
Martí A and Luque A 2010 Adv. Mater. 22 160
|
[24] |
Martí A, Antolín E, Stanley C R, Farmer C D, López E, Díaz P, Cánovas E, Linares P G and Luque A 2006 Phys. Rev. Lett. 97 247701
|
[25] |
Nozawa T, Takagi H, Watanabe K and Arakawa Y 2015 Nano Lett. 15 4483
|
[26] |
Raghavan S, Forman D, Hill P, Weisse-Bernstein N R, von Winckel G, Rotella P, Krishna S, Kennerly S W and Little J W 2004 J. Appl. Phys. 96 1036
|
[27] |
Wu J, Makableh Y F M, Vasan R, Manasreh M O, Liang B, Reyner C J and Huffaker D L 2012 Appl. Phys. Lett. 100 051907
|
[28] |
Adler F, Geiger M, Bauknecht A, Haase D, Ernst P, Dörnen A, Scholz F and Schweizer H 1998 J. Appl. Phys. 83 1631
|
[29] |
Datas A, López E, Ramiro I, Antolín E, Martí A and Luque A 2015 Phys. Rev. Lett. 114 157701
|
[30] |
Pal D and Towe E 2006 Appl. Phys. Lett. 88 153109
|
[31] |
Heitz R, Veit M, Ledentsov N N, Hoffmann A and Bimberg D 1997 Phys. Rev. B 56 10435
|
[32] |
Li S S and Xia J B 2000 J. Appl. Phys. 88 7171
|
[33] |
Schmidt T and Lischka K 1992 Phys. Rev. B 45 8989
|
[34] |
Steer M J, Mowbray D J, Tribe W R, Skolnick M S, Sturge M D, Hopkinson M, Cullis A G, Whitehouse C R and Murray R 1996 Phys. Rev. B 54 17738
|
[35] |
Kapteyn C M A, Stier O, Heitz R, Grundmann M, Zakharov N D and Bimberg D 1999 Phys. Rev. B 60 14265
|
[36] |
Paskov P P, Monemar B, Garcia J M, Schoenfeld W V and Petroff P M 2000 Appl. Phys. Lett. 77 812
|
[37] |
Harrison J W and Hauser J R 1976 J. Appl. Phys. 47 292
|
[38] |
Martí A, Luque A, Ramiroa I, Antolín E and Tobías I 2013 Sol. Energy Mater. Sol. Cells 115 138
|
[39] |
Mellor A, Tobías I and Martí A 2014 Adv. Funct. Mater. 24 339
|
[40] |
Sturge M D 1962 Phys. Rev. 127 768
|
[41] |
Elliott R J 1957 Phys. Rev. 108 1384
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|