CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Thermal fluctuation conductivity and dimensionality in iron-based superconductors |
Rui Wang(王蕊)1,2, Ding-Ping Li(李定平)1,2 |
1. School of Physics, Peking University, Beijing 100871, China;
2. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China |
|
|
Abstract The time-dependent Ginzburg-Landau Lawrence-Doniach model is used to investigate the superconducting fluctuation electrical conductivities. The theoretical result based on the self-consistent Gaussian approximation is used to fit the transport measurement data of iron-based superconductors F-doped LaOFeAs and BaFe2-xNixAs2. We demonstrate that LaOFeAs shows layered behavior, while BaFe2-xNixAs2 is more of a 3D feature. The conductivity in the region near Tc is well described by the theoretical formula.
|
Received: 02 May 2016
Revised: 06 June 2016
Accepted manuscript online:
|
PACS:
|
74.25.Ha
|
(Magnetic properties including vortex structures and related phenomena)
|
|
74.40.-n
|
(Fluctuation phenomena)
|
|
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
72.80.-r
|
(Conductivity of specific materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274018). |
Corresponding Authors:
Rui Wang, Ding-Ping Li
E-mail: ruiwang95@126.com;lidp@pku.edu.cn
|
Cite this article:
Rui Wang(王蕊), Ding-Ping Li(李定平) Thermal fluctuation conductivity and dimensionality in iron-based superconductors 2016 Chin. Phys. B 25 097401
|
[1] |
Dai P C 2015 Rev. Mod. Phys. 87 855
|
[2] |
Stewart G R 2011 Rev. Mod. Phys. 83 1589
|
[3] |
Yang J, Zhou R, Wei L L, Yang H X, Li J Q, Zhao Z X and Zheng G Q 2015 Chin. Phys. Lett. 32 107401
|
[4] |
Ye Z R, Zhang Y, Xie B P and Feng D L 2013 Chin. Phys. B 22 087407
|
[5] |
Zhu J, Wang Z S, Wang Z Y, Hou X Y, Luo H Q, Lu X Y, Li C H, Shan L, Wen H H and Ren C 2015 Chin. Phys. Lett. 32 077401
|
[6] |
Mu G, Zhu X Y, Fang L, Shan L, Ren C and Wen H H 2008 Chin. Phys. Lett. 25 02221
|
[7] |
Jiang H, Sun Y L, Xu Z A and Cao G H 2013 Chin. Phys. B 22 87410
|
[8] |
Salem-Sugui J S, Alvarenga A D, Rey R I, Mosqueira J, Luo H Q and Lu X Y 2013 Supercond. Sci. Technol. 26 125019
|
[9] |
Lebégue S 2007 Phys. Rev. B 75 035110
|
[10] |
Pallecchi I, Fanciulli C, Tropeano M, Palenzona A, Ferretti M, Malagoli A, Martinelli A, Sheikin I, Putti M and Ferdeghini C 2009 Phys. Rev. B 79 104515
|
[11] |
Rullier-Albenque F, Colson D, Forget A and Alloul H 2012 Phys. Rev. Lett. 109 187005
|
[12] |
Fanfarillo L, Benfatto L, Caprara S, Castellani C and Grilli M 2009 Phys. Rev. B 79 172508
|
[13] |
Pandya S, Sherif S, Chandra LS S and Ganesan V 2010 Supercond. Sci. Technol. 23 075015
|
[14] |
Putti M, Pallecchi I and Bellingeri E, et al., 2010 Supercond. Sci. Technol. 23 034003
|
[15] |
Liu S L, Gong L Y, Bao G, Wang H Y and Li Y T 2011 Supercond. Sci. Technol. 24 075005
|
[16] |
Welp U, Chaparro C, Koshelev A E, Kwok W K, Rydh A, Zhigadlo N D, Karpinski J and Weyeneth S 2011 Phys. Rev. B 83 100513
|
[17] |
Ramos-Álvarez A, Mosqueira J and Vidal F 2015 Phys. Rev. Lett. 115 139701
|
[18] |
Jiang X J, Li D P and Rosenstein B 2014 Phys. Rev. B 89 064507
|
[19] |
Tinh B D, Li D P and Rosenstein B 2010 Phys. Rev. B 81 224521
|
[20] |
Wilson B J and Das M P 2014 J. Phys. Condens. Matter 26 325701
|
[21] |
Salas P, Fortes M, Solís M A and Sevilla F J 2016 Physica C 524 37
|
[22] |
Koshelev A E and Varlamov A A 2014 Supercond. Sci. Technol. 27 124001
|
[23] |
Kogan V G and Schmalian J 2011 Phys. Rev. B 83 054515
|
[24] |
Larkin A and Varlamov A 2015 Theory of Fluctuations in Superconductors (Boston: Oxford University Press) p. 7-75
|
[25] |
Rey R I, Ramos-Álvarez, A, Carballeira C, Mosqueira J, Vidal F, Salem-Sugui J S, Alvarenga A D, Zhang R and Luo H 2014 Supercond. Sci. Technol. 27 075001
|
[26] |
Troy R J and Dorsey A T 1993 Phys. Rev. B 47 2715
|
[27] |
Chen G F, Li Z, Li G, Zhou J, Wu D, Dong J, Hu W Z, Zheng P, Chen Z J, Yuan H Q, Singleton J, Luo J L and Wang N L 2008 Phys. Rev. Lett. 101 057007
|
[28] |
Li G, Grissonnanche G, Yan J Q, McCallum R W, Lograsso T A, Zhou H D and Balicas L 2012 Phys. Rev. B 86 054517
|
[29] |
Jia Y, Cheng P, Fang L, Luo H Q, Yang H, Ren C, Shan L, Gu C Z and Wen H H 2008 Appl. Phys. Lett. 93 032503
|
[30] |
Chen G F, Li Z, Dong J, Li G, Hu W Z, Zhang X D, Song X H, Zheng P, Wang N L and Luo J L 2008 Phys. Rev. B 78 224512
|
[31] |
Hu J and MacDonald A H 1997 Phys. Rev. B 56 2788
|
[32] |
Aslamazov L G and Larkin A I 1968 Phys. Lett. A 26 238
|
[33] |
Ausloos M and Laurent C 1988 Phys. Rev. B 37 611
|
[34] |
Freitas P P, Tsuei C C and Plaskett T S 1987 Phys. Rev. B 36 833
|
[35] |
Oh B, Char K, Kent A D, Naito M, Beasley M R, Geballe T H, Hammond R H, Kapitulnik A and Graybeal J M 1988 Phys. Rev. B 37 7861
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|