Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 097401    DOI: 10.1088/1674-1056/25/9/097401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermal fluctuation conductivity and dimensionality in iron-based superconductors

Rui Wang(王蕊)1,2, Ding-Ping Li(李定平)1,2
1. School of Physics, Peking University, Beijing 100871, China;
2. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract  

The time-dependent Ginzburg-Landau Lawrence-Doniach model is used to investigate the superconducting fluctuation electrical conductivities. The theoretical result based on the self-consistent Gaussian approximation is used to fit the transport measurement data of iron-based superconductors F-doped LaOFeAs and BaFe2-xNixAs2. We demonstrate that LaOFeAs shows layered behavior, while BaFe2-xNixAs2 is more of a 3D feature. The conductivity in the region near Tc is well described by the theoretical formula.

Keywords:  time-dependent Ginzburg-Landau Lawrence-Doniach model      iron-based superconductors      conductivity      dimensionality  
Received:  02 May 2016      Revised:  06 June 2016      Accepted manuscript online: 
PACS:  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  74.40.-n (Fluctuation phenomena)  
  74.70.Xa (Pnictides and chalcogenides)  
  72.80.-r (Conductivity of specific materials)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11274018).

Corresponding Authors:  Rui Wang, Ding-Ping Li     E-mail:  ruiwang95@126.com;lidp@pku.edu.cn

Cite this article: 

Rui Wang(王蕊), Ding-Ping Li(李定平) Thermal fluctuation conductivity and dimensionality in iron-based superconductors 2016 Chin. Phys. B 25 097401

[1] Dai P C 2015 Rev. Mod. Phys. 87 855
[2] Stewart G R 2011 Rev. Mod. Phys. 83 1589
[3] Yang J, Zhou R, Wei L L, Yang H X, Li J Q, Zhao Z X and Zheng G Q 2015 Chin. Phys. Lett. 32 107401
[4] Ye Z R, Zhang Y, Xie B P and Feng D L 2013 Chin. Phys. B 22 087407
[5] Zhu J, Wang Z S, Wang Z Y, Hou X Y, Luo H Q, Lu X Y, Li C H, Shan L, Wen H H and Ren C 2015 Chin. Phys. Lett. 32 077401
[6] Mu G, Zhu X Y, Fang L, Shan L, Ren C and Wen H H 2008 Chin. Phys. Lett. 25 02221
[7] Jiang H, Sun Y L, Xu Z A and Cao G H 2013 Chin. Phys. B 22 87410
[8] Salem-Sugui J S, Alvarenga A D, Rey R I, Mosqueira J, Luo H Q and Lu X Y 2013 Supercond. Sci. Technol. 26 125019
[9] Lebégue S 2007 Phys. Rev. B 75 035110
[10] Pallecchi I, Fanciulli C, Tropeano M, Palenzona A, Ferretti M, Malagoli A, Martinelli A, Sheikin I, Putti M and Ferdeghini C 2009 Phys. Rev. B 79 104515
[11] Rullier-Albenque F, Colson D, Forget A and Alloul H 2012 Phys. Rev. Lett. 109 187005
[12] Fanfarillo L, Benfatto L, Caprara S, Castellani C and Grilli M 2009 Phys. Rev. B 79 172508
[13] Pandya S, Sherif S, Chandra LS S and Ganesan V 2010 Supercond. Sci. Technol. 23 075015
[14] Putti M, Pallecchi I and Bellingeri E, et al., 2010 Supercond. Sci. Technol. 23 034003
[15] Liu S L, Gong L Y, Bao G, Wang H Y and Li Y T 2011 Supercond. Sci. Technol. 24 075005
[16] Welp U, Chaparro C, Koshelev A E, Kwok W K, Rydh A, Zhigadlo N D, Karpinski J and Weyeneth S 2011 Phys. Rev. B 83 100513
[17] Ramos-Álvarez A, Mosqueira J and Vidal F 2015 Phys. Rev. Lett. 115 139701
[18] Jiang X J, Li D P and Rosenstein B 2014 Phys. Rev. B 89 064507
[19] Tinh B D, Li D P and Rosenstein B 2010 Phys. Rev. B 81 224521
[20] Wilson B J and Das M P 2014 J. Phys. Condens. Matter 26 325701
[21] Salas P, Fortes M, Solís M A and Sevilla F J 2016 Physica C 524 37
[22] Koshelev A E and Varlamov A A 2014 Supercond. Sci. Technol. 27 124001
[23] Kogan V G and Schmalian J 2011 Phys. Rev. B 83 054515
[24] Larkin A and Varlamov A 2015 Theory of Fluctuations in Superconductors (Boston: Oxford University Press) p. 7-75
[25] Rey R I, Ramos-Álvarez, A, Carballeira C, Mosqueira J, Vidal F, Salem-Sugui J S, Alvarenga A D, Zhang R and Luo H 2014 Supercond. Sci. Technol. 27 075001
[26] Troy R J and Dorsey A T 1993 Phys. Rev. B 47 2715
[27] Chen G F, Li Z, Li G, Zhou J, Wu D, Dong J, Hu W Z, Zheng P, Chen Z J, Yuan H Q, Singleton J, Luo J L and Wang N L 2008 Phys. Rev. Lett. 101 057007
[28] Li G, Grissonnanche G, Yan J Q, McCallum R W, Lograsso T A, Zhou H D and Balicas L 2012 Phys. Rev. B 86 054517
[29] Jia Y, Cheng P, Fang L, Luo H Q, Yang H, Ren C, Shan L, Gu C Z and Wen H H 2008 Appl. Phys. Lett. 93 032503
[30] Chen G F, Li Z, Dong J, Li G, Hu W Z, Zhang X D, Song X H, Zheng P, Wang N L and Luo J L 2008 Phys. Rev. B 78 224512
[31] Hu J and MacDonald A H 1997 Phys. Rev. B 56 2788
[32] Aslamazov L G and Larkin A I 1968 Phys. Lett. A 26 238
[33] Ausloos M and Laurent C 1988 Phys. Rev. B 37 611
[34] Freitas P P, Tsuei C C and Plaskett T S 1987 Phys. Rev. B 36 833
[35] Oh B, Char K, Kent A D, Naito M, Beasley M R, Geballe T H, Hammond R H, Kapitulnik A and Graybeal J M 1988 Phys. Rev. B 37 7861
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[3] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[4] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[5] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[6] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[7] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[8] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[9] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[10] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[11] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[12] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[13] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[14] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[15] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
No Suggested Reading articles found!