Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 080305    DOI: 10.1088/1674-1056/25/8/080305
GENERAL Prev   Next  

Scheme for preparation of multi-partite entanglement of atomic ensembles

Peng Xue(薛鹏), Zhi-Hao Bian(边志浩)
Department of Physics, Southeast University, Nanjing 211189, China
Abstract  We show a scheme of preparing multipartite W type of maximally entangled states among many atomic ensembles with the generation time increasing with the party number only polynomially. The scheme is based on laser manipulation of atomic ensembles and single-photon detection, and fits well the status of the current experimental technology. We also show one of the applications of this kind of W state, demonstrating Bell theorem without inequalities.
Keywords:  multi-partite entanglement      atomic ensembles  
Received:  12 November 2015      Revised:  09 April 2016      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174052 and 11474049) and the China Advanced Science and Technology Innovation Fund.
Corresponding Authors:  Peng Xue     E-mail:  gnep.eux@gmail.com

Cite this article: 

Peng Xue(薛鹏), Zhi-Hao Bian(边志浩) Scheme for preparation of multi-partite entanglement of atomic ensembles 2016 Chin. Phys. B 25 080305

[1] Einstein A, Rosen N and Podolsky B 1935 Phys. Rev. 47 777
[2] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press)
[3] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[4] Gühne O and Tóth G 2009 Phys. Rep. 474 1
[5] Tang B, Qin H, Zhang R, Liu J M and Xue P 2014 Chin. Phys. B 23 050307
[6] Xue P, Ficek Z and Sanders B C 2012 Phys. Rev. A 86 043826
[7] Xue P and Zhou X F 2008 Phys. Lett. A 372 632
[8] Xue P 2012 Chin. Phys. B 21 100306
[9] Xue P and Guo G C 2003 Phys. Rev. A 67 034302
[10] Xue P and Guo G C 2003 Phys. Lett. A 319 225
[11] Xue P and Guo G C 2004 J. Opt. Soc. Am. B 21 1358
[12] Gao Y, Zhou H, Zou D, Peng X and Du J 2013 Phys. Rev. A 87 032335
[13] Perez-Leija A, Hernandez-Herrejon J C, Moya-Cessa H, Szameit A and Christodoulides D N 2013 Phys. Rev. A 87 013842
[14] Sweke R, Sinayskiy I and Petruccione F 2013 Phys. Rev. A 87 042323
[15] Xue P and Sanders B C 2010 Phys. Rev. B 82 085326
[16] Lin X M, Xue P, Chen M Y, Chen Z H and Li X H 2006 Phys. Rev. A 74 052339
[17] Han C, Xue P and Guo G C 2005 Phys. Rev. A 72 034301
[18] Pavel L, van Enk S J, Choi K S, Papp S B, Deng H and Kimble H J 2009 New J. Phys. 11 063029
[19] Xue P, Zhan X and Bian Z H 2015 Sci. Rep. 5 7623
[20] Ding D S, Zhou Z Y, Shi B S and Guo G C 2013 Nat. Commun. 4 2527
[21] Zhang S C, Liu C, Zhou S Y, Chuu C, Loy M M T and Du S W 2012 Phys. Rev. Lett. 109 263601
[22] Vanderbruggen T, Kohlhaas R, Bertoldi A, Bernon S, Aspect A, Landragin A and Bouyer P 2013 Phys. Rev. Lett. 110 210503
[23] Behbood N, Colangelo G, Ciurana F M, Napolitano M, Sewell R J and Mitchell M W 2013 Phys. Rev. Lett. 111 103601
[24] Behbood N, Ciurana F M, Colangelo G, Napolitano M, Tóth G, Sewell R J and Mitchell M W 2014 Phys. Rev. Lett. 113 093601
[25] Ding D S, Zhang W, Zhou Z Y, Shi S, Xiang G Y, Wang X S, Jiang Y K, Shi B S and Guo G C 2015 Phys. Rev. Lett. 114 050502
[26] Choi K S, Goban A, Papp S B, Van Enk S J and Kimble H K 2010 Nature 468 412
[27] Papp S B, Kyung S C, Deng H, Pavel L, van Enk S J and Kimble H J 2009 Science 324 764
[28] Cabello A 2002 Phys. Rev. A 65 032108
[29] Gorbachev V N, Trubilko A I, Podichkina A and Zhiliba A 2003 Phys. Lett. A 314 267
[30] Dür W, Vidal G and Criac J I 2000 Phys. Rev. A 62 062314
[31] Julsgard B, Kozhekin A and Polzik E S 2001 Nature 413 400
[32] Phillips D F, Fleischhauer A, Mair A, Walsworth R L and Lukin M D 2001 Phys. Rev. Lett. 86 783
[33] Jiang W, Han C, Xue P, Duan L M and Guo G C 2004 Phys. Rev. A 69 043819
[34] Liu C, Dutton Z, Behroozi C H and Hau L V 2001 Nature 409 490
[35] Roch J F, Vigneron K, Grelu Ph, Sinatra A, Poizat J Ph and Grangier Ph 1997 Phys. Rev. Lett. 78 634
[36] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413
[37] Duan L M 2002 Phys. Rev. Lett. 88 170402
[38] Xue P, Qin H, Tang B, Zhan X, Bian Z H and Li J 2014 Chin. Phys. B 23 110307
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[3] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[4] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[5] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[6] Novel traveling quantum anonymous voting scheme via GHZ states
Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Chin. Phys. B, 2023, 32(2): 020303.
[7] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[8] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[9] Tolerance-enhanced SU(1,1) interferometers using asymmetric gain
Jian-Dong Zhang(张建东) and Shuai Wang(王帅). Chin. Phys. B, 2023, 32(1): 010306.
[10] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[11] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[12] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[13] Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters
Junqin Cao(曹君勤), Zhixin Chen(陈志歆), Yaxin Wang(王亚新), Tianfeng Feng(冯田峰), Zhihao Li(李志浩), Zeyu Xing(邢泽宇), Huashan Li(李华山), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2022, 31(11): 114204.
[14] Fringe visibility and correlation in Mach-Zehnder interferometer with an asymmetric beam splitter
Yan-Jun Liu(刘彦军), Mei-Ya Wang(王美亚), Zhong-Cheng Xiang(相忠诚), and Hai-Bin Wu(吴海滨). Chin. Phys. B, 2022, 31(11): 110305.
[15] Passively stabilized single-photon interferometer
Hai-Long Liu(刘海龙), Min-Jie Wang(王敏杰), Jia-Xin Bao(暴佳鑫), Chao Liu(刘超), Ya Li(李雅), Shu-Jing Li(李淑静), and Hai Wang(王海). Chin. Phys. B, 2022, 31(11): 110306.
No Suggested Reading articles found!