|
|
Scheme for preparation of multi-partite entanglement of atomic ensembles |
Peng Xue(薛鹏), Zhi-Hao Bian(边志浩) |
Department of Physics, Southeast University, Nanjing 211189, China |
|
|
Abstract We show a scheme of preparing multipartite W type of maximally entangled states among many atomic ensembles with the generation time increasing with the party number only polynomially. The scheme is based on laser manipulation of atomic ensembles and single-photon detection, and fits well the status of the current experimental technology. We also show one of the applications of this kind of W state, demonstrating Bell theorem without inequalities.
|
Received: 12 November 2015
Revised: 09 April 2016
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174052 and 11474049) and the China Advanced Science and Technology Innovation Fund. |
Corresponding Authors:
Peng Xue
E-mail: gnep.eux@gmail.com
|
Cite this article:
Peng Xue(薛鹏), Zhi-Hao Bian(边志浩) Scheme for preparation of multi-partite entanglement of atomic ensembles 2016 Chin. Phys. B 25 080305
|
[1] |
Einstein A, Rosen N and Podolsky B 1935 Phys. Rev. 47 777
|
[2] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press)
|
[3] |
Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
|
[4] |
Gühne O and Tóth G 2009 Phys. Rep. 474 1
|
[5] |
Tang B, Qin H, Zhang R, Liu J M and Xue P 2014 Chin. Phys. B 23 050307
|
[6] |
Xue P, Ficek Z and Sanders B C 2012 Phys. Rev. A 86 043826
|
[7] |
Xue P and Zhou X F 2008 Phys. Lett. A 372 632
|
[8] |
Xue P 2012 Chin. Phys. B 21 100306
|
[9] |
Xue P and Guo G C 2003 Phys. Rev. A 67 034302
|
[10] |
Xue P and Guo G C 2003 Phys. Lett. A 319 225
|
[11] |
Xue P and Guo G C 2004 J. Opt. Soc. Am. B 21 1358
|
[12] |
Gao Y, Zhou H, Zou D, Peng X and Du J 2013 Phys. Rev. A 87 032335
|
[13] |
Perez-Leija A, Hernandez-Herrejon J C, Moya-Cessa H, Szameit A and Christodoulides D N 2013 Phys. Rev. A 87 013842
|
[14] |
Sweke R, Sinayskiy I and Petruccione F 2013 Phys. Rev. A 87 042323
|
[15] |
Xue P and Sanders B C 2010 Phys. Rev. B 82 085326
|
[16] |
Lin X M, Xue P, Chen M Y, Chen Z H and Li X H 2006 Phys. Rev. A 74 052339
|
[17] |
Han C, Xue P and Guo G C 2005 Phys. Rev. A 72 034301
|
[18] |
Pavel L, van Enk S J, Choi K S, Papp S B, Deng H and Kimble H J 2009 New J. Phys. 11 063029
|
[19] |
Xue P, Zhan X and Bian Z H 2015 Sci. Rep. 5 7623
|
[20] |
Ding D S, Zhou Z Y, Shi B S and Guo G C 2013 Nat. Commun. 4 2527
|
[21] |
Zhang S C, Liu C, Zhou S Y, Chuu C, Loy M M T and Du S W 2012 Phys. Rev. Lett. 109 263601
|
[22] |
Vanderbruggen T, Kohlhaas R, Bertoldi A, Bernon S, Aspect A, Landragin A and Bouyer P 2013 Phys. Rev. Lett. 110 210503
|
[23] |
Behbood N, Colangelo G, Ciurana F M, Napolitano M, Sewell R J and Mitchell M W 2013 Phys. Rev. Lett. 111 103601
|
[24] |
Behbood N, Ciurana F M, Colangelo G, Napolitano M, Tóth G, Sewell R J and Mitchell M W 2014 Phys. Rev. Lett. 113 093601
|
[25] |
Ding D S, Zhang W, Zhou Z Y, Shi S, Xiang G Y, Wang X S, Jiang Y K, Shi B S and Guo G C 2015 Phys. Rev. Lett. 114 050502
|
[26] |
Choi K S, Goban A, Papp S B, Van Enk S J and Kimble H K 2010 Nature 468 412
|
[27] |
Papp S B, Kyung S C, Deng H, Pavel L, van Enk S J and Kimble H J 2009 Science 324 764
|
[28] |
Cabello A 2002 Phys. Rev. A 65 032108
|
[29] |
Gorbachev V N, Trubilko A I, Podichkina A and Zhiliba A 2003 Phys. Lett. A 314 267
|
[30] |
Dür W, Vidal G and Criac J I 2000 Phys. Rev. A 62 062314
|
[31] |
Julsgard B, Kozhekin A and Polzik E S 2001 Nature 413 400
|
[32] |
Phillips D F, Fleischhauer A, Mair A, Walsworth R L and Lukin M D 2001 Phys. Rev. Lett. 86 783
|
[33] |
Jiang W, Han C, Xue P, Duan L M and Guo G C 2004 Phys. Rev. A 69 043819
|
[34] |
Liu C, Dutton Z, Behroozi C H and Hau L V 2001 Nature 409 490
|
[35] |
Roch J F, Vigneron K, Grelu Ph, Sinatra A, Poizat J Ph and Grangier Ph 1997 Phys. Rev. Lett. 78 634
|
[36] |
Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413
|
[37] |
Duan L M 2002 Phys. Rev. Lett. 88 170402
|
[38] |
Xue P, Qin H, Tang B, Zhan X, Bian Z H and Li J 2014 Chin. Phys. B 23 110307
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|