Special Issue:
Virtual Special Topic — High temperature superconductivity
|
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Hybrid crystals of cuprates and iron-based superconductors |
Xia Dai(代霞)1, Cong-Cong Le(勒聪聪)1, Xian-Xin Wu(吴贤新)1, Jiang-Ping Hu(胡江平)1,2,3 |
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Collaborative Innovation Center of Quantum Matter, Beijing, China;
3 Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA |
|
|
Abstract We propose two possible new compounds, Ba2CuO2Fe2As2 and K2CuO2Fe2Se2, which hybridize the building blocks of two high temperature superconductors, cuprates and iron-based superconductors. These compounds consist of square CuO2 layers and antifluorite-type Fe2X2 (X=As, Se) layers separated by Ba/K. The calculations of binding energies and phonon spectra indicate that they are dynamically stable, which ensures that they may be experimentally synthesized. The Fermi surfaces and electronic structures of the two compounds inherit the characteristics of both cuprates and iron-based superconductors. These compounds can be superconductors with intriguing physical properties to help to determine the pairing mechanisms of high Tc superconductivity.
|
Received: 29 January 2016
Revised: 19 April 2016
Accepted manuscript online:
|
PACS:
|
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
61.50.-f
|
(Structure of bulk crystals)
|
|
75.50.Bb
|
(Fe and its alloys)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2015CB921300), the National Natural Science Foundation of China (Grant Nos. 1190020 and 11334012), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07000000). |
Corresponding Authors:
Jiang-Ping Hu
E-mail: jphu@iphy.ac.cn
|
Cite this article:
Xia Dai(代霞), Cong-Cong Le(勒聪聪), Xian-Xin Wu(吴贤新), Jiang-Ping Hu(胡江平) Hybrid crystals of cuprates and iron-based superconductors 2016 Chin. Phys. B 25 077402
|
[1] |
Bednorz J G and Muller K A 1986 Z. Phys. B 64 189
|
[2] |
Kishio K, Kitazawa K, Kanbe S, Yasuda I, Sugii N, Takagi H, Uchida S, Fueki K and Tanaka S 1987 Chem. Lett. 16 429
|
[3] |
Cava R J, Dover R B, Batlogg B and Rietman E A 1987 Phys. Rev. Lett. 58 408
|
[4] |
Hazen R M, Finger L W, Angel R J, Prewitt C T, Ross N L, Mao H K and Hadidiacos C G 1987 Phys. Rev. B 35 7238
|
[5] |
Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q and Chu C W 1987 Phys. Rev. Lett. 58 908
|
[6] |
Maeda H, Tanaka Y, Fukutomi M and Asano T 1988 Jpn. J. Appl. Phys. 27 L209
|
[7] |
Sheng Z Z and Hermann A M 1988 Nature 332 55
|
[8] |
Schilling A, Cantoni M, Guo J D and Ott H R 1993 Nature 363 56
|
[9] |
Kamihara Y, Watanabe T, Hirano M and Hosnon H 2008 J. Am. Chem. Soc. 130 3296
|
[10] |
Tapp J H, Tang Z, Lv B, Sasmal K, Lorenz B, Chu P C W and Guloy A M 2008 Phys. Rev. B 78 060505
|
[11] |
Rotter M, Tegel M, Johrendt D, Schellenberg I, Hermes W and Pottgen R 2008 Phys. Rev. B 78 020503
|
[12] |
Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262
|
[13] |
Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M and Chen X L 2010 Phys. Rev. B 82 180520
|
[14] |
Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
|
[15] |
Basov D N and Chubukov A V 2011 Nat. Phys. 7 272
|
[16] |
Hu J P and Ding H 2012 Sci. Rep. 2 381
|
[17] |
Barisic N, Chan M K, Li Y, Yu G, Zhao X, Dressel M, Smontara A and Greven M 2013 Proc. Natl. Acad. Sci. USA 110 12235
|
[18] |
Paglione J and Greene R L 2010 Nat. Phys. 6 645
|
[19] |
Scalapino D J 2012 Rev. Mod. Phys. 84 1383
|
[20] |
Ricci A, Joseph B, Poccia N, Xu W, Chen D, Chu W S, Wu Z Y, Marcelli A, Saini N L and Bianconi A 2010 Supercond. Sci. Technol. 23 052003
|
[21] |
Jiang H, Sun Y L, Xu Z A and Cao G H 2013 Chin. Phys. B 22 087410
|
[22] |
Zhou T T, Wang Y M, Jin S F, Li D D, Lai S F, Ying T P, Zhang H, Shen S J, Wang W J and Chen X L 2014 Inorg. Chem. 53 4154
|
[23] |
Eguchi N, Ishikawa F, Kodama M, Wakabayashi T, Nakayama A, Ohmura A and Yamada Y 2013 J. Phys. Soc. Jpn. 82 045002
|
[24] |
Jiang H, Bao J K, Zhai H F, Tang Z T, Sun Y L, Liu Y, Wang Z C, Bai H, Xu Z A and Cao G H 2015 Phys. Rev. B 92 205107
|
[25] |
Kresse G and Hafner J 1993 Phys. Rev. B 47 558
|
[26] |
Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
|
[27] |
Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
|
[28] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[29] |
Czyzyk M T and Sawatzky G A 1994 Phys. Rev. B 49 14211
|
[30] |
Monkhorst H J and Pack J 1976 Phys. Rev. B 13 5188
|
[31] |
Alfe D 2009 Computer Physics Communications 180 2622
|
[32] |
Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
|
[33] |
Togo A and Tanaka I 2015 Scr. Mater. 108 1
|
[34] |
Yin Z P, Lebegue S, Han M J, Neal B P, Savrasov S Y and Pickett W E 2008 Phys. Rev. Lett. 101 047001
|
[35] |
Mazin I I, Johannes M D, Boeri L, Koepernik K and Singh D J 2008 Phys. Rev. B 78 085104
|
[36] |
Singh D J 2008 Phys. Rev. B 78 094511
|
[37] |
Singh D J and Du M H 2008 Phys. Rev. Lett. 100 237003
|
[38] |
Ding H, Richard P, Nakayama K, Sugawara T, Arakane T, Sekiba Y, Takayama A, Souma S, Sato T, Takahashi T, Wang Z, Dai X, Fang Z, Chen G F, Luo J L and Wang N L 2008 Europhys. Lett. 83 47001
|
[39] |
Zhao L, Liu H Y, Zhang W T, Meng J Q, Jia X W, Liu G D, Dong X L, Chen G F, Luo J L, Wang N L, Wang G L, Zhou Y, Zhu Y, Wang X Y, Zhao Z X, Xu Z Y, Chen C T and Zhou X J 2008 Chin. Phys. Lett. 25 4402
|
[40] |
Nakayama K, Sato T, Richard P, Xu Y M, Sekiba Y, Souma S, Chen G F, Luo J L, Wang N L, Ding H and Takahashi T 2009 Europhys. Lett. 85 67002
|
[41] |
Liu C, Samolyuk G D, Lee Y, Ni N, Kondo T, Santander-Syro A F, Budko S L, McChesney J L, Rotenberg E, Valla T, Fedorov A V, Canfield P C, Harmon B N and Kaminski A 2008 Phys. Rev. Lett. 101 177005
|
[42] |
Xu Y M, Richard P, Nakayama K, Kawahara T, Sekiba Y, Qian T, Neupane M, Souma S, Sato T, Takahashi T, Luo H Q, Wen H H, Chen G F, Wang N L, Wang Z, Fang Z, Dai X and Ding H 2011 Nat. Commun. 2 392
|
[43] |
Akturk E and Ciraci S 2009 Phys. Rev. B 79 184523
|
[44] |
Subedi A, Zhang L, Singh D J and Du M H 2008 Phys. Rev. B 78 134514
|
[45] |
Lehman M C, Llobet A, Horigane K and Louca D 2010 J. Phys.: Conf. Ser. 251 012009
|
[46] |
Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S and Feng D L 2011 Nat. Mater. 10 273
|
[47] |
Ma F J, Ji W, Hu J P, Lu Z Y and Xiang T 2009 Phys. Rev. Lett. 102 177003
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|