Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 077402    DOI: 10.1088/1674-1056/25/7/077402
Special Issue: Virtual Special Topic — High temperature superconductivity
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Hybrid crystals of cuprates and iron-based superconductors

Xia Dai(代霞)1, Cong-Cong Le(勒聪聪)1, Xian-Xin Wu(吴贤新)1, Jiang-Ping Hu(胡江平)1,2,3
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Collaborative Innovation Center of Quantum Matter, Beijing, China;
3 Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA
Abstract  

We propose two possible new compounds, Ba2CuO2Fe2As2 and K2CuO2Fe2Se2, which hybridize the building blocks of two high temperature superconductors, cuprates and iron-based superconductors. These compounds consist of square CuO2 layers and antifluorite-type Fe2X2 (X=As, Se) layers separated by Ba/K. The calculations of binding energies and phonon spectra indicate that they are dynamically stable, which ensures that they may be experimentally synthesized. The Fermi surfaces and electronic structures of the two compounds inherit the characteristics of both cuprates and iron-based superconductors. These compounds can be superconductors with intriguing physical properties to help to determine the pairing mechanisms of high Tc superconductivity.

Keywords:  iron-based superconductors      cuprates      first-principle calculation  
Received:  29 January 2016      Revised:  19 April 2016      Accepted manuscript online: 
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  61.50.-f (Structure of bulk crystals)  
  75.50.Bb (Fe and its alloys)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2015CB921300), the National Natural Science Foundation of China (Grant Nos. 1190020 and 11334012), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07000000).

Corresponding Authors:  Jiang-Ping Hu     E-mail:  jphu@iphy.ac.cn

Cite this article: 

Xia Dai(代霞), Cong-Cong Le(勒聪聪), Xian-Xin Wu(吴贤新), Jiang-Ping Hu(胡江平) Hybrid crystals of cuprates and iron-based superconductors 2016 Chin. Phys. B 25 077402

[1] Bednorz J G and Muller K A 1986 Z. Phys. B 64 189
[2] Kishio K, Kitazawa K, Kanbe S, Yasuda I, Sugii N, Takagi H, Uchida S, Fueki K and Tanaka S 1987 Chem. Lett. 16 429
[3] Cava R J, Dover R B, Batlogg B and Rietman E A 1987 Phys. Rev. Lett. 58 408
[4] Hazen R M, Finger L W, Angel R J, Prewitt C T, Ross N L, Mao H K and Hadidiacos C G 1987 Phys. Rev. B 35 7238
[5] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q and Chu C W 1987 Phys. Rev. Lett. 58 908
[6] Maeda H, Tanaka Y, Fukutomi M and Asano T 1988 Jpn. J. Appl. Phys. 27 L209
[7] Sheng Z Z and Hermann A M 1988 Nature 332 55
[8] Schilling A, Cantoni M, Guo J D and Ott H R 1993 Nature 363 56
[9] Kamihara Y, Watanabe T, Hirano M and Hosnon H 2008 J. Am. Chem. Soc. 130 3296
[10] Tapp J H, Tang Z, Lv B, Sasmal K, Lorenz B, Chu P C W and Guloy A M 2008 Phys. Rev. B 78 060505
[11] Rotter M, Tegel M, Johrendt D, Schellenberg I, Hermes W and Pottgen R 2008 Phys. Rev. B 78 020503
[12] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262
[13] Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M and Chen X L 2010 Phys. Rev. B 82 180520
[14] Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
[15] Basov D N and Chubukov A V 2011 Nat. Phys. 7 272
[16] Hu J P and Ding H 2012 Sci. Rep. 2 381
[17] Barisic N, Chan M K, Li Y, Yu G, Zhao X, Dressel M, Smontara A and Greven M 2013 Proc. Natl. Acad. Sci. USA 110 12235
[18] Paglione J and Greene R L 2010 Nat. Phys. 6 645
[19] Scalapino D J 2012 Rev. Mod. Phys. 84 1383
[20] Ricci A, Joseph B, Poccia N, Xu W, Chen D, Chu W S, Wu Z Y, Marcelli A, Saini N L and Bianconi A 2010 Supercond. Sci. Technol. 23 052003
[21] Jiang H, Sun Y L, Xu Z A and Cao G H 2013 Chin. Phys. B 22 087410
[22] Zhou T T, Wang Y M, Jin S F, Li D D, Lai S F, Ying T P, Zhang H, Shen S J, Wang W J and Chen X L 2014 Inorg. Chem. 53 4154
[23] Eguchi N, Ishikawa F, Kodama M, Wakabayashi T, Nakayama A, Ohmura A and Yamada Y 2013 J. Phys. Soc. Jpn. 82 045002
[24] Jiang H, Bao J K, Zhai H F, Tang Z T, Sun Y L, Liu Y, Wang Z C, Bai H, Xu Z A and Cao G H 2015 Phys. Rev. B 92 205107
[25] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[26] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[27] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29] Czyzyk M T and Sawatzky G A 1994 Phys. Rev. B 49 14211
[30] Monkhorst H J and Pack J 1976 Phys. Rev. B 13 5188
[31] Alfe D 2009 Computer Physics Communications 180 2622
[32] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[33] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[34] Yin Z P, Lebegue S, Han M J, Neal B P, Savrasov S Y and Pickett W E 2008 Phys. Rev. Lett. 101 047001
[35] Mazin I I, Johannes M D, Boeri L, Koepernik K and Singh D J 2008 Phys. Rev. B 78 085104
[36] Singh D J 2008 Phys. Rev. B 78 094511
[37] Singh D J and Du M H 2008 Phys. Rev. Lett. 100 237003
[38] Ding H, Richard P, Nakayama K, Sugawara T, Arakane T, Sekiba Y, Takayama A, Souma S, Sato T, Takahashi T, Wang Z, Dai X, Fang Z, Chen G F, Luo J L and Wang N L 2008 Europhys. Lett. 83 47001
[39] Zhao L, Liu H Y, Zhang W T, Meng J Q, Jia X W, Liu G D, Dong X L, Chen G F, Luo J L, Wang N L, Wang G L, Zhou Y, Zhu Y, Wang X Y, Zhao Z X, Xu Z Y, Chen C T and Zhou X J 2008 Chin. Phys. Lett. 25 4402
[40] Nakayama K, Sato T, Richard P, Xu Y M, Sekiba Y, Souma S, Chen G F, Luo J L, Wang N L, Ding H and Takahashi T 2009 Europhys. Lett. 85 67002
[41] Liu C, Samolyuk G D, Lee Y, Ni N, Kondo T, Santander-Syro A F, Budko S L, McChesney J L, Rotenberg E, Valla T, Fedorov A V, Canfield P C, Harmon B N and Kaminski A 2008 Phys. Rev. Lett. 101 177005
[42] Xu Y M, Richard P, Nakayama K, Kawahara T, Sekiba Y, Qian T, Neupane M, Souma S, Sato T, Takahashi T, Luo H Q, Wen H H, Chen G F, Wang N L, Wang Z, Fang Z, Dai X and Ding H 2011 Nat. Commun. 2 392
[43] Akturk E and Ciraci S 2009 Phys. Rev. B 79 184523
[44] Subedi A, Zhang L, Singh D J and Du M H 2008 Phys. Rev. B 78 134514
[45] Lehman M C, Llobet A, Horigane K and Louca D 2010 J. Phys.: Conf. Ser. 251 012009
[46] Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S and Feng D L 2011 Nat. Mater. 10 273
[47] Ma F J, Ji W, Hu J P, Lu Z Y and Xiang T 2009 Phys. Rev. Lett. 102 177003
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[3] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[4] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[5] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[6] Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2021, 30(9): 097403.
[7] Electronic structures of vacancies in Co3Sn2S2
Yuxiang Gao(高于翔), Xin Jin(金鑫), Yixuan Gao(高艺璇), Yu-Yang Zhang(张余洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(7): 077102.
[8] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[9] Specific heat in superconductors
Hai-Hu Wen(闻海虎). Chin. Phys. B, 2020, 29(1): 017401.
[10] High-magnetic-field induced charge order in high-Tc cuprate superconductors
L X Zheng(郑立玄), J Li(李建), T Wu(吴涛). Chin. Phys. B, 2019, 28(11): 117402.
[11] Electric field manipulation of multiple nonequivalent Dirac cones in the electronic structures of hexagonal CrB4 sheet
Jinkun Wang(王锦坤), Yajiao Ke(柯亚娇), Qingxing Xie(谢晴兴), Yanli Li(李艳丽), Jiafu Wang(王嘉赋). Chin. Phys. B, 2018, 27(9): 097304.
[12] Nonlinear uniaxial pressure dependence of the resistivity in Sr1-xBaxFe1.97Ni0.03As2
Hui-Can Mao(毛慧灿), Dong-Liang Gong(龚冬良), Xiao-Yan Ma(马肖燕), Hui-Qian Luo(罗会仟), Yi-Feng Yang(杨义峰), Lei Shan(单磊), Shi-Liang Li(李世亮). Chin. Phys. B, 2018, 27(8): 087402.
[13] Band engineering of double-wall Mo-based hybrid nanotubes
Lei Tao(陶蕾), Yu-Yang Zhang(张余洋), Jiatao Sun(孙家涛), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 076104.
[14] Density functional theory analysis of electronic structure and optical properties of La-doped Cd2SnO4 transparent conducting oxide
Mei Tang(汤梅), Jia-Xiang Shang(尚家香), Yue Zhang(张跃). Chin. Phys. B, 2018, 27(1): 017101.
[15] Modulating the properties of monolayer C2N: A promising metal-free photocatalyst for water splitting
Song Yu(俞松), Yong-Chao Rao(饶勇超), Xiang-Mei Duan(段香梅). Chin. Phys. B, 2017, 26(8): 087301.
No Suggested Reading articles found!